BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16098782)

  • 1. Model of central and trimethylammonium metabolism for optimizing L-carnitine production by E. coli.
    Sevilla A; Schmid JW; Mauch K; Iborra JL; Reuss M; Cánovas M
    Metab Eng; 2005; 7(5-6):401-25. PubMed ID: 16098782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of energetic coenzyme pools in the production of L-carnitine by Escherichia coli.
    Cánovas M; Sevilla A; Bernal V; Leal R; Iborra JL
    Metab Eng; 2006 Nov; 8(6):603-18. PubMed ID: 16904359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic modeling of the central carbon metabolism of Escherichia coli.
    Chassagnole C; Noisommit-Rizzi N; Schmid JW; Mauch K; Reuss M
    Biotechnol Bioeng; 2002 Jul; 79(1):53-73. PubMed ID: 17590932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Link between primary and secondary metabolism in the biotransformation of trimethylammonium compounds by escherichia coli.
    Cánovas M; Bernal V; Torroglosa T; Ramirez JL; Iborra JL
    Biotechnol Bioeng; 2003 Dec; 84(6):686-99. PubMed ID: 14595781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of betaine:CoA ligase (CaiC) in the activation of betaines and the transfer of coenzyme A in Escherichia coli.
    Bernal V; Arense P; Blatz V; Mandrand-Berthelot MA; Cánovas M; Iborra JL
    J Appl Microbiol; 2008 Jul; 105(1):42-50. PubMed ID: 18266698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt stress effects on the central and carnitine metabolisms of Escherichia coli.
    Cánovas M; Bernal V; Sevilla A; Torroglosa T; Iborra JL
    Biotechnol Bioeng; 2007 Mar; 96(4):722-37. PubMed ID: 16894634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CaiT of Escherichia coli, a new transporter catalyzing L-carnitine/gamma -butyrobetaine exchange.
    Jung H; Buchholz M; Clausen J; Nietschke M; Revermann A; Schmid R; Jung K
    J Biol Chem; 2002 Oct; 277(42):39251-8. PubMed ID: 12163501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of the biotransformation of crotonobetaine into L-(-)-carnitine by Escherichia coli strains.
    Canovas M; Maiquez JR; Obón JM; Iborra JL
    Biotechnol Bioeng; 2002 Mar; 77(7):764-75. PubMed ID: 11835137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli.
    Arense P; Bernal V; Charlier D; Iborra JL; Foulquié-Moreno MR; Cánovas M
    Microb Cell Fact; 2013 May; 12():56. PubMed ID: 23718679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible role of ProP, ProU and CaiT in osmoprotection of Escherichia coli by carnitine.
    Verheul A; Wouters JA; Rombouts FM; Abee T
    J Appl Microbiol; 1998 Dec; 85(6):1036-46. PubMed ID: 9871325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of the dynamic signaling pathway involved in the cAMP mediated induction of l-carnitine biosynthesis in E. coli cultures.
    Hormiga J; González-Alcón C; Sevilla A; Cánovas M; Torres NV
    Mol Biosyst; 2010 Apr; 6(4):699-710. PubMed ID: 20237648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of salt stress on crotonobetaine and D(+)-carnitine biotransformation into L(-)-carnitine by resting cells of Escherichia coli.
    Cánovas M; Torroglosa T; Kleber HP; Iborra JL
    J Basic Microbiol; 2003; 43(4):259-68. PubMed ID: 12872307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum.
    Krömer JO; Wittmann C; Schröder H; Heinzle E
    Metab Eng; 2006 Jul; 8(4):353-69. PubMed ID: 16621639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial carnitine metabolism.
    Kleber HP
    FEMS Microbiol Lett; 1997 Feb; 147(1):1-9. PubMed ID: 9037756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Biosensor for Crotonobetaine-CoA Ligase Screening Based on the Elucidation of
    Kugler P; Fröhlich D; Wendisch VF
    ACS Synth Biol; 2020 Sep; 9(9):2460-2471. PubMed ID: 32794733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway.
    Oldiges M; Kunze M; Degenring D; Sprenger GA; Takors R
    Biotechnol Prog; 2004; 20(6):1623-33. PubMed ID: 15575692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redirecting metabolic fluxes through cofactor engineering: Role of CoA-esters pool during L(-)-carnitine production by Escherichia coli.
    Bernal V; Masdemont B; Arense P; Cánovas M; Iborra JL
    J Biotechnol; 2007 Oct; 132(2):110-7. PubMed ID: 17617487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering central metabolic modules of Escherichia coli for improving β-carotene production.
    Zhao J; Li Q; Sun T; Zhu X; Xu H; Tang J; Zhang X; Ma Y
    Metab Eng; 2013 May; 17():42-50. PubMed ID: 23500001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.