These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16098782)

  • 21. Estimating optimal profiles of genetic alterations using constraint-based models.
    Gadkar KG; Doyle Iii FJ; Edwards JS; Mahadevan R
    Biotechnol Bioeng; 2005 Jan; 89(2):243-51. PubMed ID: 15593263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate.
    Lin H; Bennett GN; San KY
    Biotechnol Bioeng; 2005 Jan; 89(2):148-56. PubMed ID: 15543598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fix Escherichia coli region contains four genes related to carnitine metabolism.
    Eichler K; Buchet A; Bourgis F; Kleber HP; Mandrand-Berthelot MA
    J Basic Microbiol; 1995; 35(4):217-27. PubMed ID: 7473063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of metabolic engineering strategies for maximizing L-(-)-carnitine production by Escherichia coli. Integration of the metabolic and bioreactor levels.
    Sevilla A; Vera J; Díaz Z; Cánovas M; Torres NV; Iborra JL
    Biotechnol Prog; 2005; 21(2):329-37. PubMed ID: 15801767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of the anaerobic growth of Salmonella typhimurium by reduction of L-carnitine, carnitine derivatives and structure-related trimethylammonium compounds.
    Seim H; Löster H; Claus R; Kleber HP; Strack E
    Arch Microbiol; 1982 Jul; 132(1):91-5. PubMed ID: 6751257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetically constrained metabolic flux analysis.
    Cox SJ; Shalel Levanon S; Bennett GN; San KY
    Metab Eng; 2005; 7(5-6):445-56. PubMed ID: 16143552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of L-carnitine by secondary metabolism of bacteria.
    Bernal V; Sevilla A; Cánovas M; Iborra JL
    Microb Cell Fact; 2007 Oct; 6():31. PubMed ID: 17910757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of L-carnitine metabolism in Escherichia coli.
    Jung K; Jung H; Kleber HP
    J Basic Microbiol; 1987; 27(3):131-7. PubMed ID: 3305860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.
    Noda S; Shirai T; Oyama S; Kondo A
    Metab Eng; 2016 Jan; 33():119-129. PubMed ID: 26654797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Reductive metabolism of L-carnitine and structure-related trimethylammonium compounds in Escherichia coli].
    Seim H; Löster H; Kleber HP
    Acta Biol Med Ger; 1982; 41(11):1009-18. PubMed ID: 6763432
    [No Abstract]   [Full Text] [Related]  

  • 31. Manipulating redox and ATP balancing for improved production of succinate in E. coli.
    Singh A; Cher Soh K; Hatzimanikatis V; Gill RT
    Metab Eng; 2011 Jan; 13(1):76-81. PubMed ID: 21040799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling, optimization and experimental assessment of continuous L-(-)-carnitine production by Escherichia coli cultures.
    Alvarez-Vasquez F; Cánovas M; Iborra JL; Torres NV
    Biotechnol Bioeng; 2002 Dec; 80(7):794-805. PubMed ID: 12402325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotransformation of D(+)-carnitine into L(-)-carnitine by resting cells of Escherichia coli O44 K74.
    Castellar MR; Cánovas M; Kleber HP; Iborra JL
    J Appl Microbiol; 1998 Nov; 85(5):883-90. PubMed ID: 9830124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints.
    Nigam R; Liang S
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():259-67. PubMed ID: 16447983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp.
    Engemann C; Elssner T; Kleber HP
    Arch Microbiol; 2001 May; 175(5):353-9. PubMed ID: 11409545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impairing and monitoring glucose catabolite repression in L-carnitine biosynthesis.
    Sevilla A; Cánovas M; Keller D; Reimers S; Iborra JL
    Biotechnol Prog; 2007; 23(6):1286-96. PubMed ID: 18062670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli.
    Eichler K; Bourgis F; Buchet A; Kleber HP; Mandrand-Berthelot MA
    Mol Microbiol; 1994 Sep; 13(5):775-86. PubMed ID: 7815937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of wet experiment design in data generation: from in vivo to in silico and back.
    Cánovas M; Bernal V; Sevilla A; Iborra JL
    In Silico Biol; 2007; 7(2 Suppl):S3-16. PubMed ID: 17822388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.