BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 16098969)

  • 1. Disruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function.
    Kanagawa M; Michele DE; Satz JS; Barresi R; Kusano H; Sasaki T; Timpl R; Henry MD; Campbell KP
    FEBS Lett; 2005 Aug; 579(21):4792-6. PubMed ID: 16098969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy.
    Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T
    Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma.
    Beltrán D; Anderson ME; Bharathy N; Settelmeyer TP; Svalina MN; Bajwa Z; Shern JF; Gultekin SH; Cuellar MA; Yonekawa T; Keller C; Campbell KP
    Skelet Muscle; 2019 May; 9(1):11. PubMed ID: 31054580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues.
    Inamori K; Willer T; Hara Y; Venzke D; Anderson ME; Clarke NF; Guicheney P; Bönnemann CG; Moore SA; Campbell KP
    J Biol Chem; 2014 Oct; 289(41):28138-48. PubMed ID: 25138275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism.
    Jones JC; Lane K; Hopkinson SB; Lecuona E; Geiger RC; Dean DA; Correa-Meyer E; Gonzales M; Campbell K; Sznajder JI; Budinger S
    J Cell Sci; 2005 Jun; 118(Pt 12):2557-66. PubMed ID: 15928048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection.
    Hara Y; Kanagawa M; Kunz S; Yoshida-Moriguchi T; Satz JS; Kobayashi YM; Zhu Z; Burden SJ; Oldstone MB; Campbell KP
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17426-31. PubMed ID: 21987822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational maturation of dystroglycan is necessary for pikachurin binding and ribbon synaptic localization.
    Kanagawa M; Omori Y; Sato S; Kobayashi K; Miyagoe-Suzuki Y; Takeda S; Endo T; Furukawa T; Toda T
    J Biol Chem; 2010 Oct; 285(41):31208-16. PubMed ID: 20682766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on α-dystroglycan and prevents muscular dystrophy.
    Okuma H; Hord JM; Chandel I; Venzke D; Anderson ME; Walimbe AS; Joseph S; Gastel Z; Hara Y; Saito F; Matsumura K; Campbell KP
    Elife; 2023 Feb; 12():. PubMed ID: 36723429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal glycosylation of dystroglycan in human genetic disease.
    Hewitt JE
    Biochim Biophys Acta; 2009 Sep; 1792(9):853-61. PubMed ID: 19539754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inside and out of dystroglycan post-translational modification.
    Moore CJ; Winder SJ
    Neuromuscul Disord; 2012 Nov; 22(11):959-65. PubMed ID: 22770978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies.
    Barresi R; Michele DE; Kanagawa M; Harper HA; Dovico SA; Satz JS; Moore SA; Zhang W; Schachter H; Dumanski JP; Cohn RD; Nishino I; Campbell KP
    Nat Med; 2004 Jul; 10(7):696-703. PubMed ID: 15184894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies.
    Michele DE; Barresi R; Kanagawa M; Saito F; Cohn RD; Satz JS; Dollar J; Nishino I; Kelley RI; Somer H; Straub V; Mathews KD; Moore SA; Campbell KP
    Nature; 2002 Jul; 418(6896):417-22. PubMed ID: 12140558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding.
    Yoshida-Moriguchi T; Yu L; Stalnaker SH; Davis S; Kunz S; Madson M; Oldstone MB; Schachter H; Wells L; Campbell KP
    Science; 2010 Jan; 327(5961):88-92. PubMed ID: 20044576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dystroglycan glycosylation and muscular dystrophy.
    Moore CJ; Hewitt JE
    Glycoconj J; 2009 Apr; 26(3):349-57. PubMed ID: 18773291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LARGE expression augments the glycosylation of glycoproteins in addition to α-dystroglycan conferring laminin binding.
    Zhang Z; Zhang P; Hu H
    PLoS One; 2011 Apr; 6(4):e19080. PubMed ID: 21533062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse.
    Grewal PK; Holzfeind PJ; Bittner RE; Hewitt JE
    Nat Genet; 2001 Jun; 28(2):151-4. PubMed ID: 11381262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy.
    Goddeeris MM; Wu B; Venzke D; Yoshida-Moriguchi T; Saito F; Matsumura K; Moore SA; Campbell KP
    Nature; 2013 Nov; 503(7474):136-40. PubMed ID: 24132234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization.
    Henry MD; Satz JS; Brakebusch C; Costell M; Gustafsson E; Fässler R; Campbell KP
    J Cell Sci; 2001 Mar; 114(Pt 6):1137-44. PubMed ID: 11228157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dystroglycan matrix receptor function in cardiac myocytes is important for limiting activity-induced myocardial damage.
    Michele DE; Kabaeva Z; Davis SL; Weiss RM; Campbell KP
    Circ Res; 2009 Nov; 105(10):984-93. PubMed ID: 19797173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pathomechanism and therapeutic strategy of Fukuyama congenital muscular dystrophy and related disorders].
    Toda T
    Rinsho Shinkeigaku; 2009 Nov; 49(11):859-62. PubMed ID: 20030231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.