These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 16098986)
41. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in spain and evaluation of their insecticidal activity against Ceratitis capitata. Vidal-Quist JC; Castañera P; González-Cabrera J J Microbiol Biotechnol; 2009 Aug; 19(8):749-59. PubMed ID: 19734711 [TBL] [Abstract][Full Text] [Related]
42. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
43. Efficient germ-line transformation of the economically important pest species Lucilia cuprina and Lucilia sericata (Diptera, Calliphoridae). Concha C; Belikoff EJ; Carey BL; Li F; Schiemann AH; Scott MJ Insect Biochem Mol Biol; 2011 Jan; 41(1):70-5. PubMed ID: 20869440 [TBL] [Abstract][Full Text] [Related]
44. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. Armengol G; Escobar MC; Maldonado ME; Orduz S J Appl Microbiol; 2007 Jan; 102(1):77-88. PubMed ID: 17184322 [TBL] [Abstract][Full Text] [Related]
45. A delta-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity. Peng R; Xiong A; Li X; Fuan H; Yao Q Appl Microbiol Biotechnol; 2003 Dec; 63(3):300-6. PubMed ID: 14556036 [TBL] [Abstract][Full Text] [Related]
46. Insecticidal activities of histone deacetylase inhibitors against a dipteran parasite of sheep, Lucilia cuprina. Bagnall NH; Hines BM; Lucke AJ; Gupta PK; Reid RC; Fairlie DP; Kotze AC Int J Parasitol Drugs Drug Resist; 2017 Apr; 7(1):51-60. PubMed ID: 28110187 [TBL] [Abstract][Full Text] [Related]
48. Amino acid substitutions in alphaA and alphaC of Cyt2Aa2 alter hemolytic activity and mosquito-larvicidal specificity. Promdonkoy B; Rungrod A; Promdonkoy P; Pathaichindachote W; Krittanai C; Panyim S J Biotechnol; 2008 Feb; 133(3):287-93. PubMed ID: 18054404 [TBL] [Abstract][Full Text] [Related]
49. Cry3Aa11: a new Cry3Aa delta-endotoxin from a local isolate of Bacillus thuringiensis. Kurt A; Ozkan M; Sezen K; Demirbağ Z; Ozcengiz G Biotechnol Lett; 2005 Aug; 27(15):1117-21. PubMed ID: 16132862 [TBL] [Abstract][Full Text] [Related]
50. Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage. Pacheco S; Gómez I; Sato R; Bravo A; Soberón M J Invertebr Pathol; 2006 May; 92(1):45-9. PubMed ID: 16603180 [TBL] [Abstract][Full Text] [Related]
51. Progress towards the development of a transgenic strain of the Australian sheep blowfly (Lucilia cuprina) suitable for a male-only sterile release program. Scott MJ; Heinrich JC; Li X Insect Biochem Mol Biol; 2004 Feb; 34(2):185-92. PubMed ID: 14871615 [TBL] [Abstract][Full Text] [Related]
52. Application of different downstream processing methods and their comparison for the large-scale preparation of Bacillus thuringiensis var. israelensis after fermentation for mosquito control. Prabakaran G; Hoti SL Biologicals; 2008 Nov; 36(6):412-5. PubMed ID: 18657445 [TBL] [Abstract][Full Text] [Related]
53. Characterization of a novel cry8 gene specific to Melolonthidae pests: Holotrichia oblita and Holotrichia parallela. Shu C; Yan G; Wang R; Zhang J; Feng S; Huang D; Song F Appl Microbiol Biotechnol; 2009 Sep; 84(4):701-7. PubMed ID: 19399496 [TBL] [Abstract][Full Text] [Related]
54. Use of Bacillus thuringiensis toxin as an alternative method of control against Haemonchus contortus. López ME; Flores J; Mendoza P; Vázquez V; Liébano E; Bravo A; Herrera D; Godínes E; Vargas P; Zamudio F Ann N Y Acad Sci; 2006 Oct; 1081():347-54. PubMed ID: 17135537 [TBL] [Abstract][Full Text] [Related]
55. Susceptibility of Cry1Ab-resistant and -susceptible sugarcane borer (Lepidoptera: Crambidae) to four Bacillus thuringiensis toxins. Wu X; Rogers Leonard B; Zhu YC; Abel CA; Head GP; Huang F J Invertebr Pathol; 2009 Jan; 100(1):29-34. PubMed ID: 18955062 [TBL] [Abstract][Full Text] [Related]
56. Characterization of Bacillus thuringiensis soil isolates from Cuba, with insecticidal activity against mosquitoes. González A; Díaz R; Díaz M; Borrero Y; Bruzón RY; Carreras B; Gato R Rev Biol Trop; 2011 Sep; 59(3):1007-16. PubMed ID: 22017108 [TBL] [Abstract][Full Text] [Related]
57. Current research to develop the entomopathogen Bacillus thuringiensis for horn fly control. Temeyer KB SAAS Bull Biochem Biotechnol; 1994; 7():1-6. PubMed ID: 7765154 [TBL] [Abstract][Full Text] [Related]
58. A new Tunisian strain of Bacillus thuringiensis kurstaki having high insecticidal activity and delta-endotoxin yield. Saadaoui I; Rouis S; Jaoua S Arch Microbiol; 2009 Apr; 191(4):341-8. PubMed ID: 19214476 [TBL] [Abstract][Full Text] [Related]
59. Exploration of insecticidal potential of Cry protein purified from Bacillus thuringiensis VIID1. Singh D; Samiksha ; Thayil SM; Sohal SK; Kesavan AK Int J Biol Macromol; 2021 Mar; 174():362-369. PubMed ID: 33493564 [TBL] [Abstract][Full Text] [Related]
60. The requirement for early exposure of Haemonchus contortus larvae to Bacillus thuringiensis for effective inhibition of larval development. O'Grady J; Akhurst RJ; Kotze AC Vet Parasitol; 2007 Nov; 150(1-2):97-103. PubMed ID: 17951006 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]