BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 16099038)

  • 1. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury.
    Jain A; Kim YT; McKeon RJ; Bellamkonda RV
    Biomaterials; 2006 Jan; 27(3):497-504. PubMed ID: 16099038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury.
    Stokols S; Tuszynski MH
    Biomaterials; 2006 Jan; 27(3):443-51. PubMed ID: 16099032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats.
    Han Q; Sun W; Lin H; Zhao W; Gao Y; Zhao Y; Chen B; Xiao Z; Hu W; Li Y; Yang B; Dai J
    Tissue Eng Part A; 2009 Oct; 15(10):2927-35. PubMed ID: 19290803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor.
    Park J; Lim E; Back S; Na H; Park Y; Sun K
    J Biomed Mater Res A; 2010 Jun; 93(3):1091-9. PubMed ID: 19768787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons.
    Ye JH; Houle JD
    Exp Neurol; 1997 Jan; 143(1):70-81. PubMed ID: 9000447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation.
    Lemons ML; Howland DR; Anderson DK
    Exp Neurol; 1999 Nov; 160(1):51-65. PubMed ID: 10630190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury.
    Ikegami T; Nakamura M; Yamane J; Katoh H; Okada S; Iwanami A; Watanabe K; Ishii K; Kato F; Fujita H; Takahashi T; Okano HJ; Toyama Y; Okano H
    Eur J Neurosci; 2005 Dec; 22(12):3036-46. PubMed ID: 16367770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury.
    Piantino J; Burdick JA; Goldberg D; Langer R; Benowitz LI
    Exp Neurol; 2006 Oct; 201(2):359-67. PubMed ID: 16764857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody.
    Han Q; Jin W; Xiao Z; Ni H; Wang J; Kong J; Wu J; Liang W; Chen L; Zhao Y; Chen B; Dai J
    Biomaterials; 2010 Dec; 31(35):9212-20. PubMed ID: 20869112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury.
    Kwon BK; Liu J; Lam C; Plunet W; Oschipok LW; Hauswirth W; Di Polo A; Blesch A; Tetzlaff W
    Spine (Phila Pa 1976); 2007 May; 32(11):1164-73. PubMed ID: 17495772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons.
    Storer PD; Dolbeare D; Houle JD
    J Neurosci Res; 2003 Nov; 74(4):502-11. PubMed ID: 14598294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury.
    Jakeman LB; Wei P; Guan Z; Stokes BT
    Exp Neurol; 1998 Nov; 154(1):170-84. PubMed ID: 9875278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
    Vavrek R; Girgis J; Tetzlaff W; Hiebert GW; Fouad K
    Brain; 2006 Jun; 129(Pt 6):1534-45. PubMed ID: 16632552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats.
    Mitsui T; Fischer I; Shumsky JS; Murray M
    Exp Neurol; 2005 Aug; 194(2):410-31. PubMed ID: 16022868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.