These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 16099119)
21. Optimization of PLGA nanoparticles formulation containing L-DOPA by applying the central composite design. Zhou YZ; Alany RG; Chuang V; Wen J Drug Dev Ind Pharm; 2013 Feb; 39(2):321-30. PubMed ID: 22607101 [TBL] [Abstract][Full Text] [Related]
22. Experimental and first-principles characterization of functionalized magnetic nanoparticles. Antipas GS; Statharas E; Tserotas P; Papadopoulos N; Hristoforou E Chemphyschem; 2013 Jun; 14(9):1934-42. PubMed ID: 23649714 [TBL] [Abstract][Full Text] [Related]
23. Magnetically responsive paclitaxel-loaded biodegradable nanoparticles for treatment of vascular disease: preparation, characterization and in vitro evaluation of anti-proliferative potential. Johnson B; Toland B; Chokshi R; Mochalin V; Koutzaki S; Polyak B Curr Drug Deliv; 2010 Oct; 7(4):263-73. PubMed ID: 20695837 [TBL] [Abstract][Full Text] [Related]
24. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Song X; Zhao Y; Wu W; Bi Y; Cai Z; Chen Q; Li Y; Hou S Int J Pharm; 2008 Feb; 350(1-2):320-9. PubMed ID: 17913411 [TBL] [Abstract][Full Text] [Related]
25. Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. Jiang W; Wu Y; He B; Zeng X; Lai K; Gu Z J Colloid Interface Sci; 2010 Jul; 347(1):1-7. PubMed ID: 20413125 [TBL] [Abstract][Full Text] [Related]
26. Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Song X; Zhao Y; Hou S; Xu F; Zhao R; He J; Cai Z; Li Y; Chen Q Eur J Pharm Biopharm; 2008 Jun; 69(2):445-53. PubMed ID: 18374554 [TBL] [Abstract][Full Text] [Related]
27. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Chourpa I; Douziech-Eyrolles L; Ngaboni-Okassa L; Fouquenet JF; Cohen-Jonathan S; Soucé M; Marchais H; Dubois P Analyst; 2005 Oct; 130(10):1395-403. PubMed ID: 16172665 [TBL] [Abstract][Full Text] [Related]
28. Annealing effects on 5 nm iron oxide nanoparticles. Vargas JM; Lima E; Socolovsky LM; Knobel M; Zanchet D; Zysler RD J Nanosci Nanotechnol; 2007 Sep; 7(9):3313-7. PubMed ID: 18019166 [TBL] [Abstract][Full Text] [Related]
29. A one-step process in preparation of cationic nanoparticles with poly(lactide-co-glycolide)-containing polyethylenimine gives efficient gene delivery. Shau MD; Shih MF; Lin CC; Chuang IC; Hung WC; Hennink WE; Cherng JY Eur J Pharm Sci; 2012 Aug; 46(5):522-9. PubMed ID: 22522118 [TBL] [Abstract][Full Text] [Related]
30. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: factor influence study and in vitro efficacy evaluation. Van de Ven H; Vermeersch M; Matheeussen A; Vandervoort J; Weyenberg W; Apers S; Cos P; Maes L; Ludwig A Int J Pharm; 2011 Nov; 420(1):122-32. PubMed ID: 21864661 [TBL] [Abstract][Full Text] [Related]
31. Nano-encapsulation of protein using an enteric polymer as carrier. Dupeyrón D; González M; Sáez V; Ramón J; Rieumont J IEE Proc Nanobiotechnol; 2005 Oct; 152(5):165-8. PubMed ID: 16441175 [TBL] [Abstract][Full Text] [Related]
32. Cellular uptake of Poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Xiong S; Zhao X; Heng BC; Ng KW; Loo JS Biotechnol J; 2011 May; 6(5):501-8. PubMed ID: 21259442 [TBL] [Abstract][Full Text] [Related]
33. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method. Choi SH; Park TG Int J Pharm; 2006 Mar; 311(1-2):223-8. PubMed ID: 16423477 [TBL] [Abstract][Full Text] [Related]
34. A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique. Kim W; Suh CY; Cho SW; Roh KM; Kwon H; Song K; Shon IJ Talanta; 2012 May; 94():348-52. PubMed ID: 22608459 [TBL] [Abstract][Full Text] [Related]
35. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance. Liu Y; Pan J; Feng SS Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049 [TBL] [Abstract][Full Text] [Related]
36. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. Westedt U; Kalinowski M; Wittmar M; Merdan T; Unger F; Fuchs J; Schäller S; Bakowsky U; Kissel T J Control Release; 2007 May; 119(1):41-51. PubMed ID: 17346845 [TBL] [Abstract][Full Text] [Related]
38. Lappaconitine-loaded microspheres for parenteral sustained release: effects of formulation variables and in vitro characterization. Xu H; Zhong H; Liu M; Xu C; Gao Y Pharmazie; 2011 Sep; 66(9):654-61. PubMed ID: 22026119 [TBL] [Abstract][Full Text] [Related]
39. Growth and characterization of highly branched nanostructures of magnetic nanoparticles. Chu Y; Hu J; Yang W; Wang C; Zhang JZ J Phys Chem B; 2006 Feb; 110(7):3135-9. PubMed ID: 16494320 [TBL] [Abstract][Full Text] [Related]
40. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Babic M; Horák D; Trchová M; Jendelová P; Glogarová K; Lesný P; Herynek V; Hájek M; Syková E Bioconjug Chem; 2008 Mar; 19(3):740-50. PubMed ID: 18288791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]