These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 16099165)

  • 1. Energetic ion bombardment of Ag surfaces by C60+ and Ga+ projectiles.
    Sun S; Szakal C; Winograd N; Wucher A
    J Am Soc Mass Spectrom; 2005 Oct; 16(10):1677-86. PubMed ID: 16099165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface sensitivity in cluster-ion-induced sputtering.
    Szakal C; Kozole J; Russo MF; Garrison BJ; Winograd N
    Phys Rev Lett; 2006 Jun; 96(21):216104. PubMed ID: 16803256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry.
    Wehbe N; Heile A; Arlinghaus HF; Bertrand P; Delcorte A
    Anal Chem; 2008 Aug; 80(16):6235-44. PubMed ID: 18630928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulations of cluster impacts: effects of the atomic masses of the projectile and target.
    Restrepo OA; Gonze X; Bertrand P; Delcorte A
    Phys Chem Chem Phys; 2013 May; 15(20):7621-7. PubMed ID: 23591660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sputtering yields for C60 and Au3 bombardment of water ice as a function of incident kinetic energy.
    Russo MF; Szakal C; Kozole J; Winograd N; Garrison BJ
    Anal Chem; 2007 Jun; 79(12):4493-8. PubMed ID: 17503768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic insights into the sputtering of thin organic films on Ag{111} induced by C60 and Ga bombardment.
    Postawa Z; Czerwinski B; Winograd N; Garrison BJ
    J Phys Chem B; 2005 Jun; 109(24):11973-9. PubMed ID: 16852476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TOF-SIMS analysis using C60. Effect of impact energy on yield and damage.
    Fletcher JS; Conlan XA; Jones EA; Biddulph G; Lockyer NP; Vickerman JC
    Anal Chem; 2006 Mar; 78(6):1827-31. PubMed ID: 16536417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of sputtering yields due to C60 versus Ga bombardment of Ag[111] as explored by molecular dynamics simulations.
    Postawa Z; Czerwinski B; Szewczyk M; Smiley EJ; Winograd N; Garrison BJ
    Anal Chem; 2003 Sep; 75(17):4402-7. PubMed ID: 14632043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the organic layer thickness in (metal-assisted) secondary ion mass spectrometry using Ga+ and C60+ projectiles.
    Wehbe N; Mouhib T; Prabhakaran A; Bertrand P; Delcorte A
    J Am Soc Mass Spectrom; 2009 Dec; 20(12):2294-303. PubMed ID: 19811931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocols for three-dimensional molecular imaging using mass spectrometry.
    Wucher A; Cheng J; Winograd N
    Anal Chem; 2007 Aug; 79(15):5529-39. PubMed ID: 17583913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-assisted secondary ion mass spectrometry using atomic (Ga+, In+) and fullerene projectiles.
    Delcorte A; Yunus S; Wehbe N; Nieuwjaer N; Poleunis C; Felten A; Houssiau L; Pireaux JJ; Bertrand P
    Anal Chem; 2007 May; 79(10):3673-89. PubMed ID: 17417819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary-ion and electron production from surfaces bombarded by large polyatomic ions.
    Martens J; Ens W; Standing KG; Verentchikov A
    Rapid Commun Mass Spectrom; 1992 Feb; 6(2):147-57. PubMed ID: 1504342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation study on image contrast and spatial resolution in helium ion microscope.
    Inai K; Ohya K; Ishitani T
    J Electron Microsc (Tokyo); 2007 Oct; 56(5):163-9. PubMed ID: 17989086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is proton cationization promoted by polyatomic primary ion bombardment during time-of-flight secondary ion mass spectrometry analysis of frozen aqueous solutions?
    Conlan XA; Lockyer NP; Vickerman JC
    Rapid Commun Mass Spectrom; 2006; 20(8):1327-34. PubMed ID: 16555365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental and theoretical view of energetic C
    Brenes DA; Postawa Z; Wucher A; Blenkinsopp P; Garrison BJ; Winograd N
    Surf Interface Anal; 2013 Jan; 45(1):50-53. PubMed ID: 26311917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry.
    Boschmans B; Van Royen P; Van Vaeck L
    Rapid Commun Mass Spectrom; 2005; 19(18):2517-27. PubMed ID: 16106345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.
    Delcorte A
    Phys Chem Chem Phys; 2005 Oct; 7(19):3395-406. PubMed ID: 16273138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide assisted C60 secondary ion mass spectrometry for molecular depth profiling of polyelectrolyte multilayers.
    ZappalĂ  G; Motta V; Tuccitto N; Vitale S; Torrisi A; Licciardello A
    Rapid Commun Mass Spectrom; 2015 Dec; 29(23):2204-10. PubMed ID: 26522311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular depth profiling with cluster ion beams.
    Cheng J; Wucher A; Winograd N
    J Phys Chem B; 2006 Apr; 110(16):8329-36. PubMed ID: 16623517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of individual nano-objects by secondary ion mass spectrometry.
    Pinnick V; Rajagopalachary S; Verkhoturov SV; Kaledin L; Schweikert EA
    Anal Chem; 2008 Dec; 80(23):9052-7. PubMed ID: 19551978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.