BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16099188)

  • 61. Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli.
    Huang B; Yang H; Fang G; Zhang X; Wu H; Li Z; Ye Q
    Biotechnol Bioeng; 2018 Apr; 115(4):943-954. PubMed ID: 29278414
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase.
    Yang YT; Aristidou AA; San KY; Bennett GN
    Metab Eng; 1999 Jan; 1(1):26-34. PubMed ID: 10935752
    [TBL] [Abstract][Full Text] [Related]  

  • 63. L-malate production by metabolically engineered Escherichia coli.
    Zhang X; Wang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2011 Jan; 77(2):427-34. PubMed ID: 21097588
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Improvement of Streptococcus suis glutamate dehydrogenase expression in Escherichia coli through genetic modification of acetate synthesis pathway.
    Wang J; Shang Q; Zhao C; Zhang S; Li Z; Lin C; Shen Z; Cheng L
    Lett Appl Microbiol; 2020 Feb; 70(2):64-70. PubMed ID: 31665809
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions.
    Johansson L; Lindskog A; Silfversparre G; Cimander C; Nielsen KF; Lidén G
    Biotechnol Bioeng; 2005 Dec; 92(5):541-52. PubMed ID: 16240440
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli.
    Yang YT; Bennett GN; San KY
    Metab Eng; 2001 Apr; 3(2):115-23. PubMed ID: 11289788
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions.
    Vemuri GN; Eiteman MA; Altman E
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):325-32. PubMed ID: 12032805
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions.
    Zhu F; Wang Y; San KY; Bennett GN
    Biotechnol Bioeng; 2018 Jul; 115(7):1743-1754. PubMed ID: 29508908
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum.
    Chen T; Zhu N; Xia H
    Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase.
    Wang W; Li Z; Xie J; Ye Q
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):737-45. PubMed ID: 19156443
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture.
    Wu H; Li ZM; Zhou L; Ye Q
    Appl Environ Microbiol; 2007 Dec; 73(24):7837-43. PubMed ID: 17951436
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli.
    Berríos-Rivera SJ; San KY; Bennett GN
    Metab Eng; 2002 Jul; 4(3):238-47. PubMed ID: 12616693
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):230-7. PubMed ID: 12616692
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineering Escherichia coli for respiro-fermentative production of pyruvate from glucose under anoxic conditions.
    Skorokhodova AY; Gulevich AY; Debabov VG
    J Biotechnol; 2019 Mar; 293():47-55. PubMed ID: 30695701
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reduction of Acetate and Lactate Contributed to Enhancement of a Recombinant Protein Production in E. coli BL21.
    Kim TS; Jung HM; Kim SY; Zhang L; Li J; Sigdel S; Park JH; Haw JR; Lee JK
    J Microbiol Biotechnol; 2015 Jul; 25(7):1093-100. PubMed ID: 25791848
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum.
    Litsanov B; Brocker M; Bott M
    Microb Biotechnol; 2013 Mar; 6(2):189-95. PubMed ID: 22513227
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Validation study of 24 deepwell microtiterplates to screen libraries of strains in metabolic engineering.
    Waegeman H; Beauprez J; Maertens J; De Mey M; Demolder L; Foulquié-Moreno MR; Boon N; Charlier D; Soetaert W
    J Biosci Bioeng; 2010 Dec; 110(6):646-52. PubMed ID: 20696615
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Elimination of succinate and acetate synthesis in recombinant Escherichia coli for D-lactate production].
    Zhou L; Tian K; Zuo Z; Chen X; Shi G; Singh S; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2011 Jan; 27(1):31-40. PubMed ID: 21553488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.