BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 16099495)

  • 1. Superoxide dismutases and their impact upon human health.
    Johnson F; Giulivi C
    Mol Aspects Med; 2005; 26(4-5):340-52. PubMed ID: 16099495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide dismutases: active sites that save, but a protein that kills.
    Miller AF
    Curr Opin Chem Biol; 2004 Apr; 8(2):162-8. PubMed ID: 15062777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi.
    Azevedo MM; Carvalho A; Pascoal C; Rodrigues F; Cássio F
    Sci Total Environ; 2007 May; 377(2-3):233-43. PubMed ID: 17391733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Oxygen radicals-superoxide dismutase system and reproduction medicine].
    Ishikawa M
    Nihon Sanka Fujinka Gakkai Zasshi; 1993 Aug; 45(8):842-8. PubMed ID: 8371013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper/zinc and manganese superoxide dismutases in alcoholic liver disease: immunohistochemical quantitation.
    Zhao M; Matter K; Laissue JA; Zimmermann A
    Histol Histopathol; 1996 Oct; 11(4):899-907. PubMed ID: 8930633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide dismutase evolution and life span regulation.
    Landis GN; Tower J
    Mech Ageing Dev; 2005 Mar; 126(3):365-79. PubMed ID: 15664623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexpression of yeast copper chaperone (yCCS) and CuZn-superoxide dismutases in Escherichia coli yields protein with high copper contents.
    Ahl IM; Lindberg MJ; Tibell LA
    Protein Expr Purif; 2004 Oct; 37(2):311-9. PubMed ID: 15358352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu,Zn superoxide dismutases from Tetrahymena thermophila: molecular evolution and gene expression of the first line of antioxidant defenses.
    Ferro D; Bakiu R; De Pittà C; Boldrin F; Cattalini F; Pucciarelli S; Miceli C; Santovito G
    Protist; 2015 Feb; 166(1):131-45. PubMed ID: 25681687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization and mRNA expression during metal exposure and thermal stress of copper/zinc- and manganese-superoxide dismutases in disk abalone, Haliotis discus discus.
    Kim KY; Lee SY; Cho YS; Bang IC; Kim KH; Kim DS; Nam YK
    Fish Shellfish Immunol; 2007 Nov; 23(5):1043-59. PubMed ID: 17574439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denaturational stress induces formation of zinc-deficient monomers of Cu,Zn superoxide dismutase: implications for pathogenesis in amyotrophic lateral sclerosis.
    Mulligan VK; Kerman A; Ho S; Chakrabartty A
    J Mol Biol; 2008 Nov; 383(2):424-36. PubMed ID: 18761352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered Cu metabolism and differential transcription of Cu/ZnSod genes in a Cu/ZnSOD-deficient mutant of maize: evidence for a Cu-responsive transcription factor.
    Ruzsa SM; Scandalios JG
    Biochemistry; 2003 Feb; 42(6):1508-16. PubMed ID: 12578363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis.
    Ferro D; Franchi N; Mangano V; Bakiu R; Cammarata M; Parrinello N; Santovito G; Ballarin L
    Aquat Toxicol; 2013 Sep; 140-141():369-79. PubMed ID: 23891785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels.
    Hansen BH; Rømma S; Garmo ØA; Olsvik PA; Andersen RA
    Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jul; 143(3):263-74. PubMed ID: 16616685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the ligand structure of copper and the stability of superoxide dismutase.
    Kajihara J; Enomoto M; Katoh K; Mitsuta K; Kohno M
    Agric Biol Chem; 1990; 54(2):495-9. PubMed ID: 19130674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidase.
    Eitinger T
    J Bacteriol; 2004 Nov; 186(22):7821-5. PubMed ID: 15516600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.
    Alscher RG; Erturk N; Heath LS
    J Exp Bot; 2002 May; 53(372):1331-41. PubMed ID: 11997379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of reactive oxygen species in pancreatic cancer.
    Teoh ML; Sun W; Smith BJ; Oberley LW; Cullen JJ
    Clin Cancer Res; 2007 Dec; 13(24):7441-50. PubMed ID: 18094428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA cleavage mediated by copper superoxide dismutase via two pathways.
    Han Y; Shen T; Jiang W; Xia Q; Liu C
    J Inorg Biochem; 2007 Feb; 101(2):214-24. PubMed ID: 17070914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of two copper/zinc superoxide dismutases (Cu/Zn-SODs) from the desert beetle Microdera punctipennis and their activities in protecting E. coli cells against cold.
    Xikeranmu Z; Abdunasir M; Ma J; Tusong K; Liu X
    Cryobiology; 2019 Apr; 87():15-27. PubMed ID: 30890324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cadmium on structure and enzymatic activity of Cu,Zn-SOD and oxidative status in neural cells.
    Huang YH; Shih CM; Huang CJ; Lin CM; Chou CM; Tsai ML; Liu TP; Chiu JF; Chen CT
    J Cell Biochem; 2006 Jun; 98(3):577-89. PubMed ID: 16440303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.