BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 16099568)

  • 1. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity.
    Kirman CR; Gargas ML; Marsh GM; Strother DE; Klaunig JE; Collins JJ; Deskin R
    Regul Toxicol Pharmacol; 2005 Oct; 43(1):85-103. PubMed ID: 16099568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide.
    Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML
    Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation of noncancer reference values for acrylonitrile.
    Kirman CR; Sweeney LM; Gargas ML; Strother DE; Collins JJ; Deskin R
    Risk Anal; 2008 Oct; 28(5):1375-94. PubMed ID: 18761732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical evaluation of the cancer risk of dibromochloropropane (DBCP).
    Clark HA; Snedeker SM
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2005; 23(2):215-60. PubMed ID: 16291528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of cancer risks projected from animal bioassays to epidemiologic studies of acrylonitrile-exposed workers.
    Ward CE; Starr TB
    Regul Toxicol Pharmacol; 1993 Oct; 18(2):214-32. PubMed ID: 8278643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points.
    Bogen KT; Gold LS
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):26-42. PubMed ID: 9056499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose.
    Gaylor DW; Swirsky Gold L
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethyl methanesulfonate toxicity in Viracept--a comprehensive human risk assessment based on threshold data for genotoxicity.
    Müller L; Gocke E; Lavé T; Pfister T
    Toxicol Lett; 2009 Nov; 190(3):317-29. PubMed ID: 19443141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide carcinogenicity.
    Klaunig JE
    J Agric Food Chem; 2008 Aug; 56(15):5984-8. PubMed ID: 18624430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical assessment of studies on the carcinogenic potential of diesel exhaust.
    Hesterberg TW; Bunn WB; Chase GR; Valberg PA; Slavin TJ; Lapin CA; Hart GA
    Crit Rev Toxicol; 2006 Oct; 36(9):727-76. PubMed ID: 17050083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2004 Nov; 82(1):279-96. PubMed ID: 15254341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylonitrile: a reevaluation of the database to support an inhalation cancer risk assessment.
    Felter SP; Dollarhide JS
    Regul Toxicol Pharmacol; 1997 Dec; 26(3):281-7. PubMed ID: 9441918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving cancer dose-response characterization by using physiologically based pharmacokinetic modeling: an analysis of pooled data for acrylonitrile-induced brain tumors to assess cancer potency in the rat.
    Kirman CR; Hays SM; Kedderis GL; Gargas ML; Strother DE
    Risk Anal; 2000 Feb; 20(1):135-51. PubMed ID: 10795346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics.
    Int J Toxicol; 2005; 24 Suppl 2():21-50. PubMed ID: 16154914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.