These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 16099830)

  • 21. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR).
    Xiao K; Sun J; Kim J; Rajagopal S; Zhai B; Villén J; Haas W; Kovacs JJ; Shukla AK; Hara MR; Hernandez M; Lachmann A; Zhao S; Lin Y; Cheng Y; Mizuno K; Ma'ayan A; Gygi SP; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15299-304. PubMed ID: 20686112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stable interaction between beta-arrestin 2 and angiotensin type 1A receptor is required for beta-arrestin 2-mediated activation of extracellular signal-regulated kinases 1 and 2.
    Wei H; Ahn S; Barnes WG; Lefkowitz RJ
    J Biol Chem; 2004 Nov; 279(46):48255-61. PubMed ID: 15355986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conservation in Aspergillus fumigatus of pH-signaling seven transmembrane domain and arrestin proteins, and implications for drug discovery.
    Bignell EM
    Ann N Y Acad Sci; 2012 Dec; 1273():35-43. PubMed ID: 23230835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the origins of arrestin and rhodopsin.
    Alvarez CE
    BMC Evol Biol; 2008 Jul; 8():222. PubMed ID: 18664266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Casein kinase II sites in the intracellular C-terminal domain of the thyrotropin-releasing hormone receptor and chimeric gonadotropin-releasing hormone receptors contribute to beta-arrestin-dependent internalization.
    Hanyaloglu AC; Vrecl M; Kroeger KM; Miles LE; Qian H; Thomas WG; Eidne KA
    J Biol Chem; 2001 May; 276(21):18066-74. PubMed ID: 11278484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of the BRET 7TM receptor/beta-arrestin assay in drug discovery and screening.
    Heding A
    Expert Rev Mol Diagn; 2004 May; 4(3):403-11. PubMed ID: 15137906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain.
    Goodman OB; Krupnick JG; Gurevich VV; Benovic JL; Keen JH
    J Biol Chem; 1997 Jun; 272(23):15017-22. PubMed ID: 9169477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological involvement in pH signaling of Vps24-mediated recruitment of Aspergillus PalB cysteine protease to ESCRT-III.
    Rodríguez-Galán O; Galindo A; Hervás-Aguilar A; Arst HN; Peñalva MA
    J Biol Chem; 2009 Feb; 284(7):4404-12. PubMed ID: 19056728
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identical domains of Yarrowia lipolytica Vps23 are required for both ESCRT and Rim pathways, but the latter needs an interaction between the Vps23 UEV domain and Rim8/PalF.
    Blanchin-Roland S
    FEMS Yeast Res; 2011 Sep; 11(6):473-86. PubMed ID: 21539706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signaling of ambient pH in Aspergillus involves a cysteine protease.
    Denison SH; Orejas M; Arst HN
    J Biol Chem; 1995 Dec; 270(48):28519-22. PubMed ID: 7499363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PRR1, a homolog of Aspergillus nidulans palF, controls pH-dependent gene expression and filamentation in Candida albicans.
    Porta A; Ramon AM; Fonzi WA
    J Bacteriol; 1999 Dec; 181(24):7516-23. PubMed ID: 10601209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of arrestin-3 phosphorylation by casein kinase II.
    Kim YM; Barak LS; Caron MG; Benovic JL
    J Biol Chem; 2002 May; 277(19):16837-46. PubMed ID: 11877451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
    Shenoy SK; Drake MT; Nelson CD; Houtz DA; Xiao K; Madabushi S; Reiter E; Premont RT; Lichtarge O; Lefkowitz RJ
    J Biol Chem; 2006 Jan; 281(2):1261-73. PubMed ID: 16280323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH regulation of penicillin production in Aspergillus nidulans.
    Shah AJ; Tilburn J; Adlard MW; Arst HN
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):209-12. PubMed ID: 2037230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arrestin interactions with G protein-coupled receptors.
    Lohse MJ; Hoffmann C
    Handb Exp Pharmacol; 2014; 219():15-56. PubMed ID: 24292823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. β-Arrestins and G protein-coupled receptor trafficking.
    Kang DS; Tian X; Benovic JL
    Methods Enzymol; 2013; 521():91-108. PubMed ID: 23351735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. beta -Arrestins regulate protease-activated receptor-1 desensitization but not internalization or Down-regulation.
    Paing MM; Stutts AB; Kohout TA; Lefkowitz RJ; Trejo J
    J Biol Chem; 2002 Jan; 277(2):1292-300. PubMed ID: 11694535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation-dependent conformational changes in {beta}-arrestin 2.
    Xiao K; Shenoy SK; Nobles K; Lefkowitz RJ
    J Biol Chem; 2004 Dec; 279(53):55744-53. PubMed ID: 15501822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. β-arrestins and G protein-coupled receptor trafficking.
    Tian X; Kang DS; Benovic JL
    Handb Exp Pharmacol; 2014; 219():173-86. PubMed ID: 24292830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Association of beta-Arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization.
    Qian H; Pipolo L; Thomas WG
    Mol Endocrinol; 2001 Oct; 15(10):1706-19. PubMed ID: 11579203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.