These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16100241)

  • 1. Examination of stimulation mechanism and strength-interval curve in cardiac tissue.
    Sidorov VY; Woods MC; Baudenbacher P; Baudenbacher F
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2602-15. PubMed ID: 16100241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cathodal stimulation in the recovery phase of a propagating planar wave in the rabbit heart reveals four stimulation mechanisms.
    Sidorov VY; Woods MC; Baudenbacher F
    J Physiol; 2007 Aug; 583(Pt 1):237-50. PubMed ID: 17569727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strength-interval curves for cardiac tissue predicted using the bidomain model.
    Roth BJ
    J Cardiovasc Electrophysiol; 1996 Aug; 7(8):722-37. PubMed ID: 8856463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The strength-interval curve in cardiac tissue.
    Kandel SM; Roth BJ
    Comput Math Methods Med; 2013; 2013():134163. PubMed ID: 23509598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anode-break excitation during end-diastolic stimulation is explained by half-cell double layer discharge.
    Nikolski V; Sambelashvili A; Efimov IR
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1217-20. PubMed ID: 12374349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of elevated extracellular potassium on the stimulation mechanism of diastolic cardiac tissue.
    Sidorov VY; Woods MC; Wikswo JP
    Biophys J; 2003 May; 84(5):3470-9. PubMed ID: 12719272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac excitation mechanisms, wavefront dynamics and strength-interval curves predicted by 3D orthotropic bidomain simulations.
    Colli Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2012 Jan; 235(1):66-84. PubMed ID: 22067511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interdependence of virtual electrode polarization and conduction velocity during premature stimulation.
    Gray RA; Iyer A; Berenfeld O; Pertsov AM; Hyatt CJ
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S13-8. PubMed ID: 17015062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle.
    Knisley SB
    Circ Res; 1995 Dec; 77(6):1229-39. PubMed ID: 7586236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ventricular excitability-interval relationship in early diastole in humans: the influence of the electrode configuration during bipolar stimulation.
    Toivonen LK; Kadish AH; Kou WH; Morady F
    Pacing Clin Electrophysiol; 1990 Jul; 13(7):875-81. PubMed ID: 1695744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation.
    Roth BJ; Patel SG; Murdick RA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1187-90. PubMed ID: 16761846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation.
    Wikswo JP; Lin SF; Abbas RA
    Biophys J; 1995 Dec; 69(6):2195-210. PubMed ID: 8599628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac optical mapping under a translucent stimulation electrode.
    Liau J; Dumas J; Janks D; Roth BJ; Knisley SB
    Ann Biomed Eng; 2004 Sep; 32(9):1202-10. PubMed ID: 15493508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models.
    Colli Franzone P; Pavarino LF; Scacchi S
    Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monophasic versus biphasic cardiac stimulation: mechanism of decreased energy requirements.
    Kavanagh KM; Duff HJ; Clark R; Robinson KV; Giles WR; Wyse DG
    Pacing Clin Electrophysiol; 1990 Oct; 13(10):1268-76. PubMed ID: 1701542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of protective zones during quatrefoil reentry in cardiac tissue.
    Hildebrandt MC; Roth BJ
    J Cardiovasc Electrophysiol; 2001 Sep; 12(9):1062-7. PubMed ID: 11573697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual electrode polarization leads to reentry in the far field.
    Lindblom AE; Aguel F; Trayanova NA
    J Cardiovasc Electrophysiol; 2001 Aug; 12(8):946-56. PubMed ID: 11513448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism.
    Lin SF; Roth BJ; Wikswo JP
    J Cardiovasc Electrophysiol; 1999 Apr; 10(4):574-86. PubMed ID: 10355700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventricular tachyarrhythmia initiation in a canine model of recent myocardial infarction. Comparison of unipolar cathodal, anodal and bipolar stimulation.
    Ohm OJ; Mitamura H; Michelson EL; Sauermelch C; Dreifus LS
    Cardiology; 1987; 74(3):169-81. PubMed ID: 3594506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anodal vs. cathodal pacing on the mechanical performance of the isolated rabbit heart.
    Thakral A; Stein LH; Shenai M; Gramatikov BI; Thakor NV
    J Appl Physiol (1985); 2000 Sep; 89(3):1159-64. PubMed ID: 10956364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.