These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16100270)

  • 1. Dissecting homo-heptamer thermodynamics by isothermal titration calorimetry: entropy-driven assembly of co-chaperonin protein 10.
    Luke K; Apiyo D; Wittung-Stafshede P
    Biophys J; 2005 Nov; 89(5):3332-6. PubMed ID: 16100270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the unique peptide tail in hyperthermostable Aquifex aeolicus cochaperonin protein 10.
    Luke K; Apiyo D; Wittung-Stafshede P
    Biochemistry; 2005 Nov; 44(44):14385-95. PubMed ID: 16262239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant.
    Guidry JJ; Moczygemba CK; Steede NK; Landry SJ; Wittung-Stafshede P
    Protein Sci; 2000 Nov; 9(11):2109-17. PubMed ID: 11152122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding and assembly pathways of co-chaperonin proteins 10: Origin of bacterial thermostability.
    Luke K; Wittung-Stafshede P
    Arch Biochem Biophys; 2006 Dec; 456(1):8-18. PubMed ID: 17084377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-electron microscopy and biophysical techniques.
    Chen DH; Luke K; Zhang J; Chiu W; Wittung-Stafshede P
    J Mol Biol; 2008 Sep; 381(3):707-17. PubMed ID: 18588898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic folding and assembly mechanisms differ for two homologous heptamers.
    Luke K; Perham M; Wittung-Stafshede P
    J Mol Biol; 2006 Oct; 363(3):729-42. PubMed ID: 16979655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of secondary structure in the entropically driven amelogenin self-assembly.
    Lakshminarayanan R; Fan D; Du C; Moradian-Oldak J
    Biophys J; 2007 Nov; 93(10):3664-74. PubMed ID: 17704165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic Thermodynamics of Protein-Ligand Binding by Isothermal Titration Calorimetry as Aid to Drug Design.
    PaketurytÄ— V; ZubrienÄ— A; Ladbury JE; Matulis D
    Methods Mol Biol; 2019; 1964():61-74. PubMed ID: 30929235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding and assembly of co-chaperonin heptamer probed by forster resonance energy transfer.
    Perham M; Wittung-Stafshede P
    Arch Biochem Biophys; 2007 Aug; 464(2):306-13. PubMed ID: 17521602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations of Lipid Binding to Acyl-CoA-Binding Proteins (ACBP) Using Isothermal Titration Calorimetry (ITC).
    Guo ZH; Chye ML
    Methods Mol Biol; 2021; 2295():401-415. PubMed ID: 34047990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of CXCR4 Transmembrane Peptides to the Bacterial Chaperonin GroEL.
    Wang X; Chi H; Li S; Xu Y
    Protein Pept Lett; 2017; 24(10):962-968. PubMed ID: 28741466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20.
    Sharkia R; Bonshtien AL; Mizrahi I; Weiss C; Niv A; Lustig A; Viitanen PV; Azem A
    Biochim Biophys Acta; 2003 Sep; 1651(1-2):76-84. PubMed ID: 14499591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First characterization of co-chaperonin protein 10 from hyper-thermophilic Aquifex aeolicus.
    Guidry J; Wittung-Stafshede P
    Biochem Biophys Res Commun; 2004 Apr; 317(1):176-80. PubMed ID: 15047164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal titration calorimetry of protein-protein interactions.
    Pierce MM; Raman CS; Nall BT
    Methods; 1999 Oct; 19(2):213-21. PubMed ID: 10527727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple equilibria of the Escherichia coli chaperonin GroES revealed by mass spectrometry.
    Donald LJ; Stokell DJ; Holliday NJ; Ens W; Standing KG; Duckworth HW
    Protein Sci; 2005 May; 14(5):1375-9. PubMed ID: 15802642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of isothermal titration calorimetry in bioinorganic chemistry.
    Grossoehme NE; Spuches AM; Wilcox DE
    J Biol Inorg Chem; 2010 Nov; 15(8):1183-91. PubMed ID: 20725755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of protein-ligand interactions: history, presence, and future aspects.
    Perozzo R; Folkers G; Scapozza L
    J Recept Signal Transduct Res; 2004 Feb; 24(1-2):1-52. PubMed ID: 15344878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic investigations of protein's behaviour with ionic liquids in aqueous medium studied by isothermal titration calorimetry.
    Bharmoria P; Kumar A
    Biochim Biophys Acta; 2016 May; 1860(5):1017-1025. PubMed ID: 26342646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding mechanism of an SH3 domain studied by NMR and ITC.
    Demers JP; Mittermaier A
    J Am Chem Soc; 2009 Apr; 131(12):4355-67. PubMed ID: 19267471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring assembly of ribonucleoprotein complexes by isothermal titration calorimetry.
    Recht MI; Ryder SP; Williamson JR
    Methods Mol Biol; 2008; 488():117-27. PubMed ID: 18982287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.