BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1610046)

  • 1. Chemical warfare agents: II. Nerve agents.
    Sidell FR; Borak J
    Ann Emerg Med; 1992 Jul; 21(7):865-71. PubMed ID: 1610046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming inhibitions.
    Kellar KJ
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13263-4. PubMed ID: 16938861
    [No Abstract]   [Full Text] [Related]  

  • 3. Organophosphorus poisoning in animals and enzymatic antidotes.
    Poirier L; Jacquet P; Plener L; Masson P; Daudé D; Chabrière E
    Environ Sci Pollut Res Int; 2021 May; 28(20):25081-25106. PubMed ID: 29959732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts.
    Finnegan TJ; Gunawardana VWL; Badjić JD
    Chemistry; 2021 Sep; 27(53):13280-13305. PubMed ID: 34185362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to organophosphorus compounds: best practice in managing timely, effective emergency responses.
    Dorandeu F; Singer C; Chatfield S; Chilcott RP; Hall J
    Eur J Emerg Med; 2023 Dec; 30(6):402-407. PubMed ID: 37883238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and practical consequences of the use of organophosphorus compounds in industry.
    Roberts DV
    J Soc Occup Med; 1979 Jan; 29(1):15-9. PubMed ID: 423542
    [No Abstract]   [Full Text] [Related]  

  • 7. Highly sensitive chemiluminescence sensors for the detection and differentiation of chemical warfare agents.
    Redy Keisar O; Pevzner A; Fridkin G; Shelef O; Shabat D; Ashkenazi N
    Anal Methods; 2024 Mar; 16(12):1736-1740. PubMed ID: 38456247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review.
    Zhang Y; Tao CA
    Gels; 2023 Oct; 9(10):. PubMed ID: 37888388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid crystal-based sensor for real-time detection of paraoxon pesticides based on acetylcholinesterase enzyme inhibition.
    Duong DST; Jang CH
    Mikrochim Acta; 2023 Mar; 190(4):122. PubMed ID: 36890280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-Through Acetylcholinesterase Sensor with Replaceable Enzyme Reactor.
    Ivanov A; Stoikov D; Shafigullina I; Shurpik D; Stoikov I; Evtugyn G
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Sublethal Organophosphate Toxicity and Anti-cholinergics on Electroencephalogram and Respiratory Mechanics in Mice.
    Bugay V; Gregory SR; Belanger-Coast MG; Zhao R; Brenner R
    Front Neurosci; 2022; 16():866899. PubMed ID: 35585917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of chemical warfare agents over cotton fabric functionalized with UiO-66-NH
    Kim MK; Kim SH; Park M; Ryu SG; Jung H
    RSC Adv; 2018 Dec; 8(72):41633-41638. PubMed ID: 35559276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing Experiment and Theory to Evaluate Rhodamine B ethylenediamine as a Fluorescent Sensor for G-type Nerve Agents.
    Hamstra A; Cai Y; Reynolds Z; Griffins CS; Rheingold AL; Schaaf NJ; Sinn E; Bates JE; Weerasinghe AJ
    J Fluoresc; 2022 May; 32(3):961-967. PubMed ID: 35218474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saracatinib, a Src Tyrosine Kinase Inhibitor, as a Disease Modifier in the Rat DFP Model: Sex Differences, Neurobehavior, Gliosis, Neurodegeneration, and Nitro-Oxidative Stress.
    Gage M; Putra M; Wachter L; Dishman K; Gard M; Gomez-Estrada C; Thippeswamy T
    Antioxidants (Basel); 2021 Dec; 11(1):. PubMed ID: 35052568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Uncharged 2-Thienostilbene Oximes as Reactivators of Organophosphate-Inhibited Cholinesterases.
    Mlakić M; Čadež T; Barić D; Puček I; Ratković A; Marinić Ž; Lasić K; Kovarik Z; Škorić I
    Pharmaceuticals (Basel); 2021 Nov; 14(11):. PubMed ID: 34832929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling-guided optimization of acetylcholinesterase reactivators: A proof for reactivation of covalently inhibited targets.
    Wei Z; Yang J; Liu Y; Nie H; Yao L; Yang J; Guo L; Zheng Z; Ouyang Q
    Eur J Med Chem; 2021 Apr; 215():113286. PubMed ID: 33611189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological Distribution and Metabolic Profiles of Carbon-11 and Fluorine-18 Tracers of VX- and Sarin-Analogs in Sprague-Dawley Rats.
    Hayes TR; Chao CK; Blecha JE; Huynh TL; Zinn KR; Thompson CM; Gerdes JM; VanBrocklin HF
    Chem Res Toxicol; 2021 Jan; 34(1):63-69. PubMed ID: 33373198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Fabric Detoxification Treatment Method Using Microwave and Polyethyleneimine Against Nerve Gas Agents.
    Kwon W; Kim C; Kim J; Kim J; Jeong E
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33265928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fluorogenic and Chromogenic Probe Distinguishes Fluoride Anions and Thiols: Implications for Discrimination of Fluoride-Containing G Series and Sulfur-Containing V Series Nerve Agents.
    Wu WH; Wang X; Zong L; Li D; Xiao YH; Sui SH; Li J; Liu M; Chen GY; Luo T; Liu M; Wang XM; Jiang ZG
    J Fluoresc; 2021 Jan; 31(1):141-149. PubMed ID: 33145674
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.