These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16100605)

  • 1. Thio[2-(benzoylamino)ethylamino]-beta-CD fragment modified gold nanoparticles as recycling extractors for [60]fullerene.
    Liu Y; Yang YW; Chen Y
    Chem Commun (Camb); 2005 Sep; (33):4208-10. PubMed ID: 16100605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water soluble heptakis(6-deoxy-6-thio)cyclomaltoheptaose capped gold nanoparticles via metal vapour synthesis: NMR structural characterization and complexation properties.
    Uccello-Barretta G; Evangelisti C; Balzano F; Vanni L; Aiello F; Jicsinszky L
    Carbohydr Res; 2011 May; 346(6):753-8. PubMed ID: 21367401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular aggregates constructed from gold nanoparticles and l-try-CD polypseudorotaxanes as captors for fullerenes.
    Liu Y; Wang H; Chen Y; Ke CF; Liu M
    J Am Chem Soc; 2005 Jan; 127(2):657-66. PubMed ID: 15643890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sol-gel-sol transition of gold nanoparticle-based supramolecular hydrogels induced by cyclodextrin inclusion.
    Jing B; Chen X; Wang X; Zhao Y; Qiu H
    Chemphyschem; 2008 Feb; 9(2):249-52. PubMed ID: 18181117
    [No Abstract]   [Full Text] [Related]  

  • 5. Highly selective and sensitive colorimetric probes for Yb3+ ions based on supramolecular aggregates assembled from beta-cyclodextrin-4,4'-dipyridine inclusion complex modified silver nanoparticles.
    Han C; Zhang L; Li H
    Chem Commun (Camb); 2009 Jun; (24):3545-7. PubMed ID: 19521602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recognition by calix[4]arene-modified gold nanoparticles in aqueous solution.
    Tshikhudo TR; Demuru D; Wang Z; Brust M; Secchi A; Arduini A; Pochini A
    Angew Chem Int Ed Engl; 2005 May; 44(19):2913-6. PubMed ID: 15818630
    [No Abstract]   [Full Text] [Related]  

  • 7. Investigation of silver nanoparticles synthesis using aminated β-cyclodextrin.
    Abou-Okeil A; Amr A; Abdel-Mohdy FA
    Carbohydr Polym; 2012 Jun; 89(1):1-6. PubMed ID: 24750595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrins over polymers on gold nanoparticles.
    Wu YL; Li J
    Angew Chem Int Ed Engl; 2009; 48(21):3842-5. PubMed ID: 19378311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-ligand interaction studies of water-soluble aminoalcohol capped gold nanoparticles by NMR.
    Porta F; Krpetić Z; Prati L; Gaiassi A; Scarì G
    Langmuir; 2008 Jul; 24(14):7061-4. PubMed ID: 18549254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrophotometric study of fluorescence sensing and selective binding of biochemical substrates by 2,2'-bridged bis(beta-cyclodextrin) and its water-soluble fullerene conjugate.
    Liu Y; Liang P; Chen Y; Zhao YL; Ding F; Yu A
    J Phys Chem B; 2005 Dec; 109(49):23739-44. PubMed ID: 16375355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-standing 3D supramolecular hybrid particle structures.
    Ling XY; Phang IY; Maijenburg W; Schönherr H; Reinhoudt DN; Vancso GJ; Huskens J
    Angew Chem Int Ed Engl; 2009; 48(5):983-7. PubMed ID: 19107882
    [No Abstract]   [Full Text] [Related]  

  • 12. Gold(0) porphyrins on gold nanoparticles.
    Kanehara M; Takahashi H; Teranishi T
    Angew Chem Int Ed Engl; 2008; 47(2):307-10. PubMed ID: 18022989
    [No Abstract]   [Full Text] [Related]  

  • 13. Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase.
    Li M; Liu X; Jiang F; Guo L; Yang L
    J Chromatogr A; 2011 Jun; 1218(23):3725-9. PubMed ID: 21555128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of silver and gold nanoparticles in ionic liquid.
    Singh P; Kumari K; Katyal A; Kalra R; Chandra R
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):218-20. PubMed ID: 19272833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of lysine, arginine and histidine by novel p-sulfonatocalix[4]arene thiol functionalized gold nanoparticles in aqueous solution.
    Patel G; Menon S
    Chem Commun (Camb); 2009 Jun; (24):3563-5. PubMed ID: 19521608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chain-like assembly of gold nanoparticles on artificial DNA templates via 'click chemistry'.
    Fischler M; Sologubenko A; Mayer J; Clever G; Burley G; Gierlich J; Carell T; Simon U
    Chem Commun (Camb); 2008 Jan; (2):169-71. PubMed ID: 18092076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticles prepared using cape aloe active components.
    Krpetić Z; Scarì G; Caneva E; Speranza G; Porta F
    Langmuir; 2009 Jul; 25(13):7217-21. PubMed ID: 19505092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimuli-responsive reversible transport of nanoparticles across water/oil interfaces.
    Edwards EW; Chanana M; Wang D; Möhwald H
    Angew Chem Int Ed Engl; 2008; 47(2):320-3. PubMed ID: 18000930
    [No Abstract]   [Full Text] [Related]  

  • 19. Amperometric biosensor for xanthine with supramolecular architecture.
    Villalonga R; Camacho C; Cao R; Hernández J; Matías JC
    Chem Commun (Camb); 2007 Mar; (9):942-4. PubMed ID: 17311128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.