These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16101103)

  • 1. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data.
    Morey-Holton E; Globus RK; Kaplansky A; Durnova G
    Adv Space Biol Med; 2005; 10():7-40. PubMed ID: 16101103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
    Morey-Holton ER; Globus RK
    Bone; 1998 May; 22(5 Suppl):83S-88S. PubMed ID: 9600759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hindlimb unloading rodent model: technical aspects.
    Morey-Holton ER; Globus RK
    J Appl Physiol (1985); 2002 Apr; 92(4):1367-77. PubMed ID: 11895999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindlimb unloading in adult rats using an alternative tail harness design.
    Knox M; Fluckey JD; Bennett P; Peterson CA; Dupont-Versteegden EE
    Aviat Space Environ Med; 2004 Aug; 75(8):692-6. PubMed ID: 15328787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of space flight conditions on the function of the immune system and catecholamine production simulated in a rodent model of hindlimb unloading.
    Aviles H; Belay T; Vance M; Sonnenfeld G
    Neuroimmunomodulation; 2005; 12(3):173-81. PubMed ID: 15905626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle.
    Lawler JM; Song W; Demaree SR
    Free Radic Biol Med; 2003 Jul; 35(1):9-16. PubMed ID: 12826251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of animal models for space flight physiology studies, with special focus on the immune system.
    Sonnenfeld G
    Gravit Space Biol Bull; 2005 Jun; 18(2):31-5. PubMed ID: 16038091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats.
    Cunningham HC; West DWD; Baehr LM; Tarke FD; Baar K; Bodine SC; Christiansen BA
    BMC Musculoskelet Disord; 2018 Jul; 19(1):223. PubMed ID: 30021585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hindlimb unloading: rodent analog for microgravity.
    Globus RK; Morey-Holton E
    J Appl Physiol (1985); 2016 May; 120(10):1196-206. PubMed ID: 26869711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats.
    Basso N; Jia Y; Bellows CG; Heersche JN
    Bone; 2005 Sep; 37(3):370-8. PubMed ID: 16005699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spaceflight and hindlimb suspension disuse models in mice.
    Milstead JR; Simske SJ; Bateman TA
    Biomed Sci Instrum; 2004; 40():105-10. PubMed ID: 15133943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the hindlimb-unloading model of spaceflight conditions on resistance of mice to infection with Klebsiella pneumoniae.
    Belay T; Aviles H; Vance M; Fountain K; Sonnenfeld G
    J Allergy Clin Immunol; 2002 Aug; 110(2):262-8. PubMed ID: 12170267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of short-term microgravity and long-term hindlimb unloading on rat cardiac mass and function.
    Ray CA; Vasques M; Miller TA; Wilkerson MK; Delp MD
    J Appl Physiol (1985); 2001 Sep; 91(3):1207-13. PubMed ID: 11509517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of skeletal muscle size and anabolism are reproducible with multiple periods of unloading/reloading.
    Shimkus KL; Shirazi-Fard Y; Wiggs MP; Ullah ST; Pohlenz C; Gatlin DM; Carroll CC; Hogan HA; Fluckey JD
    J Appl Physiol (1985); 2018 Nov; 125(5):1456-1467. PubMed ID: 30091665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal models for the study of the effects of spaceflight on the immune system.
    Sonnenfeld G
    Adv Space Res; 2003; 32(8):1473-6. PubMed ID: 15000088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unloading of juvenile muscle results in a reduced muscle size 9 wk after reloading.
    Mozdziak PE; Pulvermacher PM; Schultz E
    J Appl Physiol (1985); 2000 Jan; 88(1):158-64. PubMed ID: 10642376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats.
    Shirazi-Fard Y; Anthony RA; Kwaczala AT; Judex S; Bloomfield SA; Hogan HA
    Bone; 2013 Oct; 56(2):461-73. PubMed ID: 23871849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading.
    Mozdziak PE; Pulvermacher PM; Schultz E
    J Appl Physiol (1985); 2001 Jul; 91(1):183-90. PubMed ID: 11408429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension.
    D'Amelio F; Fox RA; Wu LC; Daunton NG
    J Neurosci Res; 1996 Jun; 44(6):532-9. PubMed ID: 8794944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space flight and the skeleton: lessons for the earthbound.
    Bikle DD; Halloran BP; Morey-Holton E
    Endocrinologist; 1997; 7(1):10-22. PubMed ID: 11540416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.