These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 16101110)

  • 1. Responses across the gravity continuum: hypergravity to microgravity.
    Wade CE
    Adv Space Biol Med; 2005; 10():225-45. PubMed ID: 16101110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravitational Influence on Human Living Systems and the Evolution of Species on Earth.
    Adamopoulos K; Koutsouris D; Zaravinos A; Lambrou GI
    Molecules; 2021 May; 26(9):. PubMed ID: 34066886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of gravity, hypergravity and microgravity on vestibular neurones of the crab.
    Fraser PJ; Araujo R; Alferez D; Carneiro MJ; Pollard M
    J Gravit Physiol; 2004 Jul; 11(2):P1-4. PubMed ID: 16229107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the vestibular system in the arterial pressure response to parabolic-flight-induced gravitational changes in human subjects.
    Iwata C; Abe C; Tanaka K; Morita H
    Neurosci Lett; 2011 May; 495(2):121-5. PubMed ID: 21440600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environment.
    Morita H; Kaji H; Ueta Y; Abe C
    J Physiol Sci; 2020 Mar; 70(1):17. PubMed ID: 32169037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents.
    Vasques M; Lang C; Grindeland RE; Roy RR; Daunton N; Bigbee AJ; Wade CE
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A2-8. PubMed ID: 10776445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vestibulo-ocular reflex of hypergravity rats.
    Wubbels RJ; de Jong HA
    J Gravit Physiol; 2001 Jul; 8(1):P113-4. PubMed ID: 12650194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of gravity on the circadian timing system.
    Fuller CA; Hoban-Higgins TM; Griffin DW; Murakami DM
    Adv Space Res; 1994; 14(8):399-408. PubMed ID: 11537948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravitational biology and the mammalian circadian timing system.
    Fuller CA; Murakami DM; Sulzman FM
    Adv Space Res; 1989; 9(11):283-92. PubMed ID: 11537343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies toward birth and early mammalian development in space.
    Ronca AE
    Adv Space Res; 2003; 32(8):1483-90. PubMed ID: 15000095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of gravity-sensing organs in altered gravity conditions: opposite conclusions from an amphibian and a molluscan preparation.
    Wiederhold ML; Pedrozo HA; Harrison JL; Hejl R; Gao W
    J Gravit Physiol; 1997 Jul; 4(2):P51-4. PubMed ID: 11540698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of gravity in the phylogeny of structure and function in animal sensors of spatial orientation, and their predicted action in weightlessness.
    Vinnikov YA; Gazenko OG; Titova LK; Bronstein AA; Tsirulis TP; Pevzner RA; Govardovskii VI; Gribakin FG; Pal'mbakh LP; Aronova MZ; Mashinskii AL; Ivanov VP; Kharkeevich TA; Pyatkina GA
    Life Sci Space Res; 1974; 12():159-76. PubMed ID: 11911144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space life sciences: gravitational biology: 2002.
    Adv Space Res; 2003; 32(8):vi, 1451-647. PubMed ID: 15000079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biological clock of Neurospora in a microgravity environment.
    Ferraro JS; Fuller CA; Sulzman FM
    Adv Space Res; 1989; 9(11):251-60. PubMed ID: 11537340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optomotor behaviour in Xenopus laevis tadpoles as a measure of the effect of gravity on visual and vestibular neural integration.
    Pronych SP; Souza KA; Neff AW; Wassersug RJ
    J Exp Biol; 1996 Dec; 199(Pt 12):2689-701. PubMed ID: 9110955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.
    Marušič U; Meeusen R; Pišot R; Kavcic V
    Eur J Sport Sci; 2014; 14(8):813-22. PubMed ID: 24734884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in metabolism and vestibular function depend on gravitational load in mice.
    Abe C; Katayama C; Horii K; Okada R; Kamimura D; Nin F; Morita H
    J Appl Physiol (1985); 2023 Jan; 134(1):10-17. PubMed ID: 36395381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.