These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 16101432)

  • 1. Plasmon resonance methods in GPCR signaling and other membrane events.
    Alves ID; Park CK; Hruby VJ
    Curr Protein Pept Sci; 2005 Aug; 6(4):293-312. PubMed ID: 16101432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of G-Protein Coupled Receptor Signaling in Membrane Environment by Plasmon Waveguide Resonance.
    Alves ID; Lecomte S
    Acc Chem Res; 2019 Apr; 52(4):1059-1067. PubMed ID: 30865424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Techniques: plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions.
    Tollin G; Salamon Z; Hruby VJ
    Trends Pharmacol Sci; 2003 Dec; 24(12):655-9. PubMed ID: 14654307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon Waveguide Resonance: Principles, Applications and Historical Perspectives on Instrument Development.
    Rascol E; Villette S; Harté E; Alves ID
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chapter 6. Plasmon resonance methods in membrane protein biology applications to GPCR signaling.
    Salamon Z; Tollin G; Alves I; Hruby V
    Methods Enzymol; 2009; 461():123-46. PubMed ID: 19480917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband plasmon waveguide resonance spectroscopy for probing biological thin films.
    Zhang H; Orosz KS; Takahashi H; Saavedra SS
    Appl Spectrosc; 2009 Sep; 63(9):1062-7. PubMed ID: 19796490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Monitoring of GPCR Reconstitution and Ligand-Binding Activity by Plasmon Waveguide Resonance.
    Alves ID
    Methods Mol Biol; 2020; 2168():123-143. PubMed ID: 33582990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-waveguide resonance spectroscopy: a new tool for investigating signal transduction by G-protein coupled receptors.
    Tollin G; Salamon Z; Cowell S; Hruby VJ
    Life Sci; 2003 Nov; 73(26):3307-11. PubMed ID: 14572873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of surface plasmon resonance imaging to monitoring G protein-coupled receptor signaling and its modulation in a heterologous expression system.
    Nonobe Y; Yokoyama T; Kamikubo Y; Yoshida S; Hisajima N; Shinohara H; Shiraishi Y; Sakurai T; Tabata T
    BMC Biotechnol; 2016 Apr; 16():36. PubMed ID: 27068216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology.
    Lee TH; Hirst DJ; Aguilar MI
    Biochim Biophys Acta; 2015 Sep; 1848(9):1868-85. PubMed ID: 26009270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-waveguide resonance spectroscopy studies of lateral segregation in solid-supported proteolipid bilayers.
    Salamon Z; Devanathan S; Tollin G
    Methods Mol Biol; 2007; 398():159-78. PubMed ID: 18214380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of plasmon waveguide resonance (PWR) spectroscopy for examining binding, signaling and lipid domain partitioning of membrane proteins.
    Hruby VJ; Alves I; Cowell S; Salamon Z; Tollin G
    Life Sci; 2010 Apr; 86(15-16):569-74. PubMed ID: 19281827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon resonance spectroscopy: probing molecular interactions within membranes.
    Salamon Z; Brown MF; Tollin G
    Trends Biochem Sci; 1999 Jun; 24(6):213-9. PubMed ID: 10366845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities.
    Hruby VJ; Tollin G
    Curr Opin Pharmacol; 2007 Oct; 7(5):507-14. PubMed ID: 17869585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions.
    Mozsolits H; Aguilar MI
    Biopolymers; 2002; 66(1):3-18. PubMed ID: 12228917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance analysis of seven-transmembrane receptors.
    Aristotelous T; Hopkins AL; Navratilova I
    Methods Enzymol; 2015; 556():499-525. PubMed ID: 25857797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of G protein-coupled receptor-mediated cellular response involved in cytoskeletal rearrangement using surface plasmon resonance.
    Chen K; Obinata H; Izumi T
    Biosens Bioelectron; 2010 Mar; 25(7):1675-80. PubMed ID: 20044245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system.
    Komolov KE; Senin II; Philippov PP; Koch KW
    Anal Chem; 2006 Feb; 78(4):1228-34. PubMed ID: 16478116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of lipid membrane surfaces for molecular interaction studies by surface plasmon resonance biosensors.
    Besenicar MP; Anderluh G
    Methods Mol Biol; 2010; 627():191-200. PubMed ID: 20217622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.