These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16101557)

  • 21. Molecular pathogenesis of Parkinson's disease.
    Gandhi S; Wood NW
    Hum Mol Genet; 2005 Sep; 14(18):2749-55. PubMed ID: 16126732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxidative stress in Parkinson's disease.
    Jenner P
    Ann Neurol; 2003; 53 Suppl 3():S26-36; discussion S36-8. PubMed ID: 12666096
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease?
    Herrera A; Muñoz P; Steinbusch HWM; Segura-Aguilar J
    ACS Chem Neurosci; 2017 Apr; 8(4):702-711. PubMed ID: 28233992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease.
    Surmeier DJ; Guzman JN; Sanchez-Padilla J; Schumacker PT
    Neuroscience; 2011 Dec; 198():221-31. PubMed ID: 21884755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson's disease.
    Hastings TG
    J Bioenerg Biomembr; 2009 Dec; 41(6):469-72. PubMed ID: 19967436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel cell death signaling pathways in neurotoxicity models of dopaminergic degeneration: relevance to oxidative stress and neuroinflammation in Parkinson's disease.
    Kanthasamy A; Jin H; Mehrotra S; Mishra R; Kanthasamy A; Rana A
    Neurotoxicology; 2010 Sep; 31(5):555-61. PubMed ID: 20005250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dopaminergic neurons reduced to silence by oxidative stress: an early step in the death cascade in Parkinson's disease?
    Michel PP; Ruberg M; Hirsch E
    Sci STKE; 2006 Apr; 2006(332):pe19. PubMed ID: 16639033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic approach to studying Parkinson's disease.
    Zhang J; Goodlett DR
    Mol Neurobiol; 2004 Jun; 29(3):271-88. PubMed ID: 15181239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuron-Astrocyte Interactions in Parkinson's Disease.
    Miyazaki I; Asanuma M
    Cells; 2020 Dec; 9(12):. PubMed ID: 33297340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia.
    Ben-Shachar D
    J Neural Transm (Vienna); 2020 Feb; 127(2):159-168. PubMed ID: 31848775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parkinson's disease: a short story of 200 years.
    Cuenca L; Gil-Martinez AL; Cano-Fernandez L; Sanchez-Rodrigo C; Estrada C; Fernandez-Villalba E; Herrero MT
    Histol Histopathol; 2019 Jun; 34(6):573-591. PubMed ID: 30540129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson's disease.
    Duan W; Zhang Z; Gash DM; Mattson MP
    Ann Neurol; 1999 Oct; 46(4):587-97. PubMed ID: 10514095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration.
    Zhu W; Li X; Xie W; Luo F; Kaur D; Andersen JK; Jankovic J; Le W
    Neurobiol Dis; 2010 Feb; 37(2):307-13. PubMed ID: 19818853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease.
    Calì T; Ottolini D; Brini M
    Biofactors; 2011; 37(3):228-40. PubMed ID: 21674642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132.
    Zafar KS; Inayat-Hussain SH; Ross D
    J Neurochem; 2007 Aug; 102(3):913-21. PubMed ID: 17504267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parkinson disease: from pathology to molecular disease mechanisms.
    Dexter DT; Jenner P
    Free Radic Biol Med; 2013 Sep; 62():132-144. PubMed ID: 23380027
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The centrality of mitochondria in the pathogenesis and treatment of Parkinson's disease.
    Camilleri A; Vassallo N
    CNS Neurosci Ther; 2014 Jul; 20(7):591-602. PubMed ID: 24703487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular pathogenesis, experimental models and new therapeutic strategies for Parkinson's disease.
    Yamashita H; Matsumoto M
    Regen Med; 2007 Jul; 2(4):447-55. PubMed ID: 17635051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parkinson's disease: oxidative stress and therapeutic approaches.
    Surendran S; Rajasankar S
    Neurol Sci; 2010 Oct; 31(5):531-40. PubMed ID: 20221655
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.