These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1610171)

  • 1. Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation.
    Bae JH; Miller KJ
    Appl Environ Microbiol; 1992 Feb; 58(2):471-5. PubMed ID: 1610171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycine betaine transport by Staphylococcus aureus: evidence for two transport systems and for their possible roles in osmoregulation.
    Pourkomailian B; Booth IR
    J Gen Microbiol; 1992 Dec; 138(12):2515-8. PubMed ID: 1487723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli.
    Wengender PA; Miller KJ
    Appl Environ Microbiol; 1995 Jan; 61(1):252-9. PubMed ID: 7887605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus.
    Amin US; Lash TD; Wilkinson BJ
    Arch Microbiol; 1995 Feb; 163(2):138-42. PubMed ID: 7710327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation.
    Townsend DE; Wilkinson BJ
    J Bacteriol; 1992 Apr; 174(8):2702-10. PubMed ID: 1556088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible link between a 35 kDa membrane protein and osmolyte transport in Staphylococcus aureus.
    Pourkomaillan B
    Lett Appl Microbiol; 1998 Feb; 26(2):149-52. PubMed ID: 9569700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a high-affinity glycine betaine transport system in Staphylococcus aureus.
    Bae JH; Anderson SH; Miller KJ
    Appl Environ Microbiol; 1993 Aug; 59(8):2734-6. PubMed ID: 8368857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycine betaine transport by Staphylococcus aureus: evidence for feedback regulation of the activity of the two transport systems.
    Pourkomailian B; Booth IR
    Microbiology (Reading); 1994 Nov; 140 ( Pt 11)():3131-8. PubMed ID: 7812452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis.
    Molenaar D; Hagting A; Alkema H; Driessen AJ; Konings WN
    J Bacteriol; 1993 Sep; 175(17):5438-44. PubMed ID: 8366030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamine and proline accumulation by Staphylococcus aureus with reduction in water activity.
    Anderson CB; Witter LD
    Appl Environ Microbiol; 1982 Jun; 43(6):1501-3. PubMed ID: 7103493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Humectant permeability influences growth and compatible solute uptake by Staphylococcus aureus subjected to osmotic stress.
    Vilhelmsson O; Miller KJ
    J Food Prot; 2002 Jun; 65(6):1008-15. PubMed ID: 12092714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine.
    Graham JE; Wilkinson BJ
    J Bacteriol; 1992 Apr; 174(8):2711-6. PubMed ID: 1556089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system.
    Cairney J; Booth IR; Higgins CF
    J Bacteriol; 1985 Dec; 164(3):1224-32. PubMed ID: 3905768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos.
    Anas MK; Hammer MA; Lever M; Stanton JA; Baltz JM
    J Cell Physiol; 2007 Jan; 210(1):266-77. PubMed ID: 17044075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptational change in proline and water content of Staphylococcus aureus after alteration of environmental salt concentration.
    Koujima I; Hayashi H; Tomochika K; Okabe A; Kanemasa Y
    Appl Environ Microbiol; 1978 Mar; 35(3):467-70. PubMed ID: 637544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of the putP gene of Corynebacterium glutamicum and characterization of a low-affinity uptake system for compatible solutes.
    Peter H; Bader A; Burkovski A; Lambert C; Krämer R
    Arch Microbiol; 1997 Aug; 168(2):143-51. PubMed ID: 9238106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway.
    Cánovas D; Vargas C; Csonka LN; Ventosa A; Nieto JJ
    J Bacteriol; 1996 Dec; 178(24):7221-6. PubMed ID: 8955405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmoregulation in Rhodobacter sphaeroides.
    Abee T; Palmen R; Hellingwerf KJ; Konings WN
    J Bacteriol; 1990 Jan; 172(1):149-54. PubMed ID: 2294084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline transport increases growth efficiency in salt-stressed Streptomyces griseus.
    Killham K; Firestone MK
    Appl Environ Microbiol; 1984 Jul; 48(1):239-41. PubMed ID: 6433794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational and transcriptional analyses of the Staphylococcus aureus low-affinity proline transporter OpuD during in vitro growth and infection of murine tissues.
    Wetzel KJ; Bjorge D; Schwan WR
    FEMS Immunol Med Microbiol; 2011 Apr; 61(3):346-55. PubMed ID: 21231964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.