These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 16101904)
1. A reinterpretation of the earliest quantification of global plant productivity by von Liebig (1862). Ito A New Phytol; 2005 Sep; 167(3):641-3. PubMed ID: 16101904 [No Abstract] [Full Text] [Related]
2. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Sitch S; Cox PM; Collins WJ; Huntingford C Nature; 2007 Aug; 448(7155):791-4. PubMed ID: 17653194 [TBL] [Abstract][Full Text] [Related]
3. Global primary production. Woodward FI Curr Biol; 2007 Apr; 17(8):R269-73. PubMed ID: 17437700 [No Abstract] [Full Text] [Related]
4. Global change: the water cycle freshens up. Matthews D Nature; 2006 Feb; 439(7078):793-4. PubMed ID: 16482139 [No Abstract] [Full Text] [Related]
5. Modelling ¹⁸O₂ and ¹⁶O₂ unidirectional fluxes in plants: I. regulation of pre-industrial atmosphere. André MJ Biosystems; 2011 Feb; 103(2):239-51. PubMed ID: 20950669 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Campbell JE; Carmichael GR; Chai T; Mena-Carrasco M; Tang Y; Blake DR; Blake NJ; Vay SA; Collatz GJ; Baker I; Berry JA; Montzka SA; Sweeney C; Schnoor JL; Stanier CO Science; 2008 Nov; 322(5904):1085-8. PubMed ID: 19008442 [TBL] [Abstract][Full Text] [Related]
8. Land plants equilibrate O2 and CO2 concentrations in the atmosphere. Igamberdiev AU; Lea PJ Photosynth Res; 2006 Feb; 87(2):177-94. PubMed ID: 16432665 [TBL] [Abstract][Full Text] [Related]
9. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model. André MJ Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764 [TBL] [Abstract][Full Text] [Related]
10. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants. André MJ Biosystems; 2013 Aug; 113(2):115-26. PubMed ID: 23318161 [TBL] [Abstract][Full Text] [Related]
11. Plants, CO2 and photosynthesis in the 21st century. Griffin KL; Seemann JR Chem Biol; 1996 Apr; 3(4):245-54. PubMed ID: 8807852 [TBL] [Abstract][Full Text] [Related]
14. Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis. Conte MH; Weber JC Nature; 2002 Jun; 417(6889):639-41. PubMed ID: 12050663 [TBL] [Abstract][Full Text] [Related]
15. Photosynthesis in balance with respiration? Clark ME Science; 2006 Aug; 313(5789):917-8; author reply 917-8. PubMed ID: 16917043 [No Abstract] [Full Text] [Related]
16. Consistency of gas exchange of man and plants in a closed ecological system: lines of attack on the problem. Gitelson JI; Okladnikov YuN Adv Space Res; 1996; 18(1-2):205-10. PubMed ID: 11538965 [TBL] [Abstract][Full Text] [Related]
17. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Piao S; Ciais P; Friedlingstein P; Peylin P; Reichstein M; Luyssaert S; Margolis H; Fang J; Barr A; Chen A; Grelle A; Hollinger DY; Laurila T; Lindroth A; Richardson AD; Vesala T Nature; 2008 Jan; 451(7174):49-52. PubMed ID: 18172494 [TBL] [Abstract][Full Text] [Related]
18. Differences in pH influence the fate of CO Law SR Physiol Plant; 2019 Mar; 165(3):445-447. PubMed ID: 30788844 [TBL] [Abstract][Full Text] [Related]