BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 16102054)

  • 1. The vitamin K cycle.
    Stafford DW
    J Thromb Haemost; 2005 Aug; 3(8):1873-8. PubMed ID: 16102054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin K-dependent gamma-glutamylcarboxylation: an ancient posttranslational modification.
    Bandyopadhyay PK
    Vitam Horm; 2008; 78():157-84. PubMed ID: 18374194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of the factor IX gamma-carboxyglutamic acid domain to the vitamin K-dependent gamma-glutamyl carboxylase active site induces an allosteric effect that may ensure processive carboxylation and regulate the release of carboxylated product.
    Lin PJ; Straight DL; Stafford DW
    J Biol Chem; 2004 Feb; 279(8):6560-6. PubMed ID: 14660587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane.
    Cain D; Hutson SM; Wallin R
    J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Sane DC; Hutson SM
    Thromb Res; 2002 Nov; 108(4):221-6. PubMed ID: 12617985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin K epoxide reductase significantly improves carboxylation in a cell line overexpressing factor X.
    Sun YM; Jin DY; Camire RM; Stafford DW
    Blood; 2005 Dec; 106(12):3811-5. PubMed ID: 16081695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function and metabolism of vitamin K.
    Olson RE
    Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N; Hutson SM; Wallin R
    J Biol Chem; 2007 Jan; 282(4):2626-35. PubMed ID: 17124179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gamma-carboxylation recognition site is sufficient to direct vitamin K-dependent carboxylation on an adjacent glutamate-rich region of thrombin in a propeptide-thrombin chimera.
    Furie BC; Ratcliffe JV; Tward J; Jorgensen MJ; Blaszkowsky LS; DiMichele D; Furie B
    J Biol Chem; 1997 Nov; 272(45):28258-62. PubMed ID: 9353278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profactor IX propeptide and glutamate substrate binding sites on the vitamin K-dependent carboxylase identified by site-directed mutagenesis.
    Sugiura I; Furie B; Walsh CT; Furie BC
    J Biol Chem; 1996 Jul; 271(30):17837-44. PubMed ID: 8663364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-site-specificity of the vitamin K-dependent carboxylase: in vitro carboxylation of des-gamma-carboxylated bone Gla protein and Des-gamma-carboxylated pro bone Gla protein.
    Benton ME; Price PA; Suttie JW
    Biochemistry; 1995 Jul; 34(29):9541-51. PubMed ID: 7626624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional study of the vitamin K cycle in mammalian cells.
    Tie JK; Jin DY; Straight DL; Stafford DW
    Blood; 2011 Mar; 117(10):2967-74. PubMed ID: 21239697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the purified vitamin K-dependent gamma-glutamyl carboxylase.
    Morris DP; Soute BA; Vermeer C; Stafford DW
    J Biol Chem; 1993 Apr; 268(12):8735-42. PubMed ID: 8473318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):401-8. PubMed ID: 17182266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin K-Dependent Protein Activation: Normal Gamma-Glutamyl Carboxylation and Disruption in Disease.
    Berkner KL; Runge KW
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V
    J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional insights into enzymes of the vitamin K cycle.
    Tie JK; Stafford DW
    J Thromb Haemost; 2016 Feb; 14(2):236-47. PubMed ID: 26663892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.