BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 16102054)

  • 21. Role of the propeptide and gamma-glutamic acid domain of factor IX for in vitro carboxylation by the vitamin K-dependent carboxylase.
    Stanley TB; Wu SM; Houben RJ; Mutucumarana VP; Stafford DW
    Biochemistry; 1998 Sep; 37(38):13262-8. PubMed ID: 9748333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation.
    Rishavy MA; Usubalieva A; Hallgren KW; Berkner KL
    J Biol Chem; 2011 Mar; 286(9):7267-78. PubMed ID: 20978134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of amino acids in the gamma-carboxylation recognition site on the propeptide of prothrombin.
    Huber P; Schmitz T; Griffin J; Jacobs M; Walsh C; Furie B; Furie BC
    J Biol Chem; 1990 Jul; 265(21):12467-73. PubMed ID: 2373701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin K-dependent carboxylase. Stoichiometry of carboxylation and vitamin K 2,3-epoxide formation.
    Larson AE; Friedman PA; Suttie JW
    J Biol Chem; 1981 Nov; 256(21):11032-5. PubMed ID: 7287748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Propeptide and glutamate-containing substrates bound to the vitamin K-dependent carboxylase convert its vitamin K epoxidase function from an inactive to an active state.
    Sugiura I; Furie B; Walsh CT; Furie BC
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9069-74. PubMed ID: 9256436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of vitamin K-dependent proteins.
    Suttie JW
    FASEB J; 1993 Mar; 7(5):445-52. PubMed ID: 8462786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Warfarin and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Hutson SM
    Trends Mol Med; 2004 Jul; 10(7):299-302. PubMed ID: 15242675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vitamin K-dependent carboxylation of the carboxylase.
    Berkner KL; Pudota BN
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):466-71. PubMed ID: 9435215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymorphisms in vitamin K-dependent gamma-carboxylation-related genes influence interindividual variability in plasma protein C and protein S activities in the general population.
    Kimura R; Kokubo Y; Miyashita K; Otsubo R; Nagatsuka K; Otsuki T; Sakata T; Nagura J; Okayama A; Minematsu K; Naritomi H; Honda S; Sato K; Tomoike H; Miyata T
    Int J Hematol; 2006 Dec; 84(5):387-97. PubMed ID: 17189218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent findings in understanding the biological function of vitamin K.
    Uotila L; Suttie JW
    Med Biol; 1982 Feb; 60(1):16-24. PubMed ID: 6803084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of sequences within the gamma-carboxylase that represent a novel contact site with vitamin K-dependent proteins and that are required for activity.
    Pudota BN; Hommema EL; Hallgren KW; McNally BA; Lee S; Berkner KL
    J Biol Chem; 2001 Dec; 276(50):46878-86. PubMed ID: 11591726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines.
    Jin DY; Tie JK; Stafford DW
    Biochemistry; 2007 Jun; 46(24):7279-83. PubMed ID: 17523679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. VKORC1 and the vitamin K cycle.
    Garcia AA; Reitsma PH
    Vitam Horm; 2008; 78():23-33. PubMed ID: 18374188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation.
    Bouchard BA; Furie B; Furie BC
    Biochemistry; 1999 Jul; 38(29):9517-23. PubMed ID: 10413529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The vitamin K cycle.
    Oldenburg J; Marinova M; Müller-Reible C; Watzka M
    Vitam Horm; 2008; 78():35-62. PubMed ID: 18374189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation.
    Rishavy MA; Berkner KL
    Biochemistry; 2008 Sep; 47(37):9836-46. PubMed ID: 18717596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition.
    Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK
    Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression and characterization of recombinant vitamin K-dependent gamma-glutamyl carboxylase from an invertebrate, Conus textile.
    Czerwiec E; Begley GS; Bronstein M; Stenflo J; Taylor K; Furie BC; Furie B
    Eur J Biochem; 2002 Dec; 269(24):6162-72. PubMed ID: 12473112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. γ-Glutamyl carboxylase mutations differentially affect the biological function of vitamin K-dependent proteins.
    Hao Z; Jin DY; Chen X; Schurgers LJ; Stafford DW; Tie JK
    Blood; 2021 Jan; 137(4):533-543. PubMed ID: 33507293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low serum vitamin K in PXE results in defective carboxylation of mineralization inhibitors similar to the GGCX mutations in the PXE-like syndrome.
    Vanakker OM; Martin L; Schurgers LJ; Quaglino D; Costrop L; Vermeer C; Pasquali-Ronchetti I; Coucke PJ; De Paepe A
    Lab Invest; 2010 Jun; 90(6):895-905. PubMed ID: 20368697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.