These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 16102054)

  • 41. The metabolic functions and mechanism of action of vitamin K.
    Uotila L
    Scand J Clin Lab Invest Suppl; 1990; 201():109-17. PubMed ID: 2244179
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional Study of the Vitamin K Cycle Enzymes in Live Cells.
    Tie JK; Stafford DW
    Methods Enzymol; 2017; 584():349-394. PubMed ID: 28065270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two enzymes catalyze vitamin K 2,3-epoxide reductase activity in mouse: VKORC1 is highly expressed in exocrine tissues while VKORC1L1 is highly expressed in brain.
    Caspers M; Czogalla KJ; Liphardt K; Müller J; Westhofen P; Watzka M; Oldenburg J
    Thromb Res; 2015 May; 135(5):977-83. PubMed ID: 25747820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro inhibition of vitamin K dependent carboxylation by tetrachloropyridinol and the imidazopyridines.
    Friedman PA; Griep AE
    Biochemistry; 1980 Jul; 19(14):3381-6. PubMed ID: 6773541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid.
    Suttie JW
    CRC Crit Rev Biochem; 1980; 8(2):191-223. PubMed ID: 6772376
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells.
    Tie JK; Jin DY; Tie K; Stafford DW
    J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin.
    Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J
    Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Key Pathways and Regulators of Vitamin K Function and Intermediary Metabolism.
    Shearer MJ; Okano T
    Annu Rev Nutr; 2018 Aug; 38():127-151. PubMed ID: 29856932
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.
    Goodstadt L; Ponting CP
    Trends Biochem Sci; 2004 Jun; 29(6):289-92. PubMed ID: 15276181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1.
    Van Horn WD
    Crit Rev Biochem Mol Biol; 2013; 48(4):357-72. PubMed ID: 23631591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin.
    Wallin R; Martin LF
    J Clin Invest; 1985 Nov; 76(5):1879-84. PubMed ID: 3932474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites.
    Haque JA; McDonald MG; Kulman JD; Rettie AE
    Blood; 2014 Jan; 123(4):582-9. PubMed ID: 24297869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carboxylase overexpression effects full carboxylation but poor release and secretion of factor IX: implications for the release of vitamin K-dependent proteins.
    Hallgren KW; Hommema EL; McNally BA; Berkner KL
    Biochemistry; 2002 Dec; 41(50):15045-55. PubMed ID: 12475254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. VKOR paralog VKORC1L1 supports vitamin K-dependent protein carboxylation in vivo.
    Lacombe J; Rishavy MA; Berkner KL; Ferron M
    JCI Insight; 2018 Jan; 3(1):. PubMed ID: 29321368
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.
    Oldenburg J; Bevans CG; Müller CR; Watzka M
    Antioxid Redox Signal; 2006; 8(3-4):347-53. PubMed ID: 16677080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The propeptides of the vitamin K-dependent proteins possess different affinities for the vitamin K-dependent carboxylase.
    Stanley TB; Jin DY; Lin PJ; Stafford DW
    J Biol Chem; 1999 Jun; 274(24):16940-4. PubMed ID: 10358041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular cloning of matrix Gla protein: implications for substrate recognition by the vitamin K-dependent gamma-carboxylase.
    Price PA; Fraser JD; Metz-Virca G
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8335-9. PubMed ID: 3317405
    [TBL] [Abstract][Full Text] [Related]  

  • 58. VKORC1: a warfarin-sensitive enzyme in vitamin K metabolism and biosynthesis of vitamin K-dependent blood coagulation factors.
    Wallin R; Wajih N; Hutson SM
    Vitam Horm; 2008; 78():227-46. PubMed ID: 18374197
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conantokin-G precursor and its role in gamma-carboxylation by a vitamin K-dependent carboxylase from a Conus snail.
    Bandyopadhyay PK; Colledge CJ; Walker CS; Zhou LM; Hillyard DR; Olivera BM
    J Biol Chem; 1998 Mar; 273(10):5447-50. PubMed ID: 9488665
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The biochemical basis of warfarin therapy.
    Suttie JW
    Adv Exp Med Biol; 1987; 214():3-16. PubMed ID: 3310547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.