These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16102580)

  • 1. Screening by fluorescence in situ hybridization for MLL status at diagnosis in 239 unselected patients with acute myeloblastic leukemia.
    Arnaud B; Douet-Guilbert N; Morel F; Le Bris MJ; Herry A; Banzakour S; Bourquard P; Morice P; Le Calvez G; Marion V; Abgrall JF; Berthou C; De Braekeleer M
    Cancer Genet Cytogenet; 2005 Sep; 161(2):110-5. PubMed ID: 16102580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence of MLL rearrangement in acute myeloid leukemia, and a CALM-AF10 fusion in M4 type acute myeloblastic leukemia.
    Abdou SM; Jadayel DM; Min T; Swansbury GJ; Dainton MG; Jafer O; Powles RL; Catovsky D
    Leuk Lymphoma; 2002 Jan; 43(1):89-95. PubMed ID: 11911106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incidence and characterization of MLL gene (11q23) rearrangements in acute myeloid leukemia M1 and M5.
    Poirel H; Rack K; Delabesse E; Radford-Weiss I; Troussard X; Debert C; Leboeuf D; Bastard C; Picard F; Veil-Buzyn A; Flandrin G; Bernard O; Macintyre E
    Blood; 1996 Mar; 87(6):2496-505. PubMed ID: 8630416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptic 5' MLL gene insertion in an X-chromosome in acute myeloblastic leukemia.
    Douet-Guilbert N; Arnaud B; Morel F; Le Bris MJ; De Braekeleer M
    Cancer Genet Cytogenet; 2005 Mar; 157(2):178-80. PubMed ID: 15721643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on mixed lineage leukemia gene rearrangement in AML-M4/M5 by interphase fluorescence in situ hybridization].
    Pan JL; Xue YQ; Jiang HY; Li JY; Chen SN; Wu YF
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2004 Jun; 21(3):288-90. PubMed ID: 15192841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of cryptic MLL insertions using a commercial dual-color fluorescence in situ hybridization probe.
    Dyson MJ; Talley PJ; Reilly JT; Stevenson D; Parsons E; Tighe J
    Cancer Genet Cytogenet; 2003 Nov; 147(1):81-3. PubMed ID: 14580777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias.
    von Bergh A; Emanuel B; van Zelderen-Bhola S; Smetsers T; van Soest R; Stul M; Vranckx H; Schuuring E; Hagemeijer A; Kluin P
    Genes Chromosomes Cancer; 2000 May; 28(1):14-22. PubMed ID: 10738298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormalities of chromosome band 11q23 and the MLL gene in pediatric myelomonocytic and monoblastic leukemias. Identification of the t(9;11) as an indicator of long survival.
    Martinez-Climent JA; Espinosa R; Thirman MJ; Le Beau MM; Rowley JD
    J Pediatr Hematol Oncol; 1995 Nov; 17(4):277-83. PubMed ID: 7583381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML.
    Schnittger S; Kinkelin U; Schoch C; Heinecke A; Haase D; Haferlach T; Büchner T; Wörmann B; Hiddemann W; Griesinger F
    Leukemia; 2000 May; 14(5):796-804. PubMed ID: 10803509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of 11q23/MLL rearrangements in infant leukemias with fluorescence in situ hybridization and molecular analysis.
    Martinez-Climent JA; Thirman MJ; Espinosa R; Le Beau MM; Rowley JD
    Leukemia; 1995 Aug; 9(8):1299-304. PubMed ID: 7643616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of cytogenetics, Southern blotting, and fluorescence in situ hybridization as methods for detecting MLL gene rearrangements in children with acute leukemia and with 11q23 abnormalities.
    Mathew S; Behm F; Dalton J; Raimondi S
    Leukemia; 1999 Nov; 13(11):1713-20. PubMed ID: 10557043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rearrangement of the MLL gene in acute myeloblastic leukemia: report of two rare translocations.
    Douet-Guilbert N; Morel F; Le Bris MJ; Herry A; Morice P; Bourquard P; Banzakour S; Le Calvez G; Marion V; Berthou C; De Braekeleer M
    Cancer Genet Cytogenet; 2005 Mar; 157(2):169-74. PubMed ID: 15721641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of various MLL gene aberrations that lead to MLL gene mutation in patients with acute lymphoblastic leukemia (ALL) and infants with acute leukemia.
    Pais A; Amare Kadam P; Raje G; Sawant M; Kabre S; Jain H; Advani S; Banavali S
    Leuk Res; 2005 May; 29(5):517-26. PubMed ID: 15755504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X chromosome insertion in the MLL gene in a case of childhood acute myeloblastic leukemia.
    Arnaud B; Morel F; Douet-Guilbert N; Le Bris MJ; De Braekeleer M
    Cancer Genet Cytogenet; 2004 Jul; 152(2):149-52. PubMed ID: 15262436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis.
    Dreyling MH; Schrader K; Fonatsch C; Schlegelberger B; Haase D; Schoch C; Ludwig W; Löffler H; Büchner T; Wörmann B; Hiddemann W; Bohlander SK
    Blood; 1998 Jun; 91(12):4662-7. PubMed ID: 9616163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MLL rearrangement with t(6;11)(q15;q23) as a sole abnormality in a patient with de novo acute myeloid leukemia: conventional cytogenetics, FISH, and multicolor FISH analyses for detection of rare MLL-related chromosome abnormalities.
    Park TS; Lee ST; Song J; Lee KA; Lee SG; Kim J; Suh B; Kim SJ; Lee JH; Park R; Choi JR
    Cancer Genet Cytogenet; 2008 Nov; 187(1):50-3. PubMed ID: 18992643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group.
    Gröschel S; Schlenk RF; Engelmann J; Rockova V; Teleanu V; Kühn MW; Eiwen K; Erpelinck C; Havermans M; Lübbert M; Germing U; Schmidt-Wolf IG; Beverloo HB; Schuurhuis GJ; Ossenkoppele GJ; Schlegelberger B; Verdonck LF; Vellenga E; Verhoef G; Vandenberghe P; Pabst T; Bargetzi M; Krauter J; Ganser A; Valk PJ; Löwenberg B; Döhner K; Döhner H; Delwel R
    J Clin Oncol; 2013 Jan; 31(1):95-103. PubMed ID: 23008312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency and clinical significance of the MLL gene rearrangements in infant acute leukemia.
    Taki T; Ida K; Bessho F; Hanada R; Kikuchi A; Yamamoto K; Sako M; Tsuchida M; Seto M; Ueda R; Hayashi Y
    Leukemia; 1996 Aug; 10(8):1303-7. PubMed ID: 8709635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rearrangement of MLL in a patient with congenital acute monoblastic leukemia and granulocytic sarcoma associated with a t(1;11)(p36;q23) translocation.
    Douet-Guilbert N; Morel F; Le Bris MJ; Sassolas B; Giroux JD; De Braekeleer M
    Leuk Lymphoma; 2005 Jan; 46(1):143-6. PubMed ID: 15621793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogene amplification in transforming myelodysplasia.
    Papenhausen PR; Griffin S; Tepperberg J
    Exp Mol Pathol; 2005 Oct; 79(2):168-75. PubMed ID: 16026782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.