BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 16102602)

  • 1. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria.
    Sauer U; Eikmanns BJ
    FEMS Microbiol Rev; 2005 Sep; 29(4):765-94. PubMed ID: 16102602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo quantification of parallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum.
    Petersen S; de Graaf AA; Eggeling L; Möllney M; Wiechert W; Sahm H
    J Biol Chem; 2000 Nov; 275(46):35932-41. PubMed ID: 10946002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.
    Katz J; Wals P; Lee WN
    J Biol Chem; 1993 Dec; 268(34):25509-21. PubMed ID: 7902352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants: pathways of C4 acid decarboxylation in bundle sheath cells of Urochloa panicoides.
    Burnell JN; Hatch MD
    Arch Biochem Biophys; 1988 Jan; 260(1):187-99. PubMed ID: 3341740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids.
    Yin L; Zhou Y; Ding N; Fang Y
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism.
    Koendjbiharie JG; van Kranenburg R; Kengen SWM
    FEMS Microbiol Rev; 2021 May; 45(3):. PubMed ID: 33289792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phosphoenolpyruvate-pyruvate-oxaloacetate node genes and enzymes in Streptomyces coelicolor M-145.
    Llamas-Ramírez R; Takahashi-Iñiguez T; Flores ME
    Int Microbiol; 2020 Aug; 23(3):429-439. PubMed ID: 31900743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolysis without pyruvate kinase in Clostridium thermocellum.
    Olson DG; Hörl M; Fuhrer T; Cui J; Zhou J; Maloney MI; Amador-Noguez D; Tian L; Sauer U; Lynd LR
    Metab Eng; 2017 Jan; 39():169-180. PubMed ID: 27914869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyruvate metabolism in Saccharomyces cerevisiae.
    Pronk JT; Yde Steensma H; Van Dijken JP
    Yeast; 1996 Dec; 12(16):1607-33. PubMed ID: 9123965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual Phosphoenolpyruvate (PEP) Synthetase-Like Protein Crucial to Enhancement of Polyhydroxyalkanoate Accumulation in Haloferax mediterranei Revealed by Dissection of PEP-Pyruvate Interconversion Mechanism.
    Chen J; Mitra R; Zhang S; Zuo Z; Lin L; Zhao D; Xiang H; Han J
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31350314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of phosphoenolpyruvate cycle activity to fasting and to hyperinsulinemia in human subjects.
    Wolfe RR; Chinkes D; Baba H; Rosenblatt J; Zhang XJ
    Am J Physiol; 1996 Jul; 271(1 Pt 1):E159-76. PubMed ID: 8760094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli.
    Long CP; Au J; Sandoval NR; Gebreselassie NA; Antoniewicz MR
    Nat Commun; 2017 Jan; 8():14316. PubMed ID: 28128209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic regulation mechanisms in vivo.
    Petersen S; Mack C; de Graaf AA; Riedel C; Eikmanns BJ; Sahm H
    Metab Eng; 2001 Oct; 3(4):344-61. PubMed ID: 11676569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic networks to generate pyruvate, PEP and ATP from glycerol in Pseudomonas fluorescens.
    Alhasawi A; Thomas SC; Appanna VD
    Enzyme Microb Technol; 2016 Apr; 85():51-6. PubMed ID: 26920481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in enzyme activities at the pyruvate node in glutamate-overproducing Corynebacterium glutamicum.
    Hasegawa T; Hashimoto K; Kawasaki H; Nakamatsu T
    J Biosci Bioeng; 2008 Jan; 105(1):12-9. PubMed ID: 18295714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic adaptation and ATP homeostasis in Pseudomonas fluorescens exposed to phosphate stress.
    Legendre F; MacLean A; Tharmalingam S; Appanna VD
    World J Microbiol Biotechnol; 2022 Nov; 38(12):255. PubMed ID: 36319705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OXALOACETATE DECARBOXYLATION AND OXALOACETATE-CARBON DIOXIDE EXCHANGE IN ACETOBACTER XYLINUM.
    BENZIMAN M; HELLER N
    J Bacteriol; 1964 Dec; 88(6):1678-87. PubMed ID: 14240957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.