These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16102674)

  • 21. Laryngeal mechanisms during human 4-kHz vocalization studied with CT, videostroboscopy, and color Doppler imaging.
    Tsai CG; Shau YW; Liu HM; Hsiao TY
    J Voice; 2008 May; 22(3):275-82. PubMed ID: 17509826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Deep Learning Approach for Quantifying Vocal Fold Dynamics During Connected Speech Using Laryngeal High-Speed Videoendoscopy.
    Yousef AM; Deliyski DD; Zacharias SRC; de Alarcon A; Orlikoff RF; Naghibolhosseini M
    J Speech Lang Hear Res; 2022 Jun; 65(6):2098-2113. PubMed ID: 35605603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters.
    Schlegel P; Kunduk M; Stingl M; Semmler M; Döllinger M; Bohr C; Schützenberger A
    PLoS One; 2019; 14(4):e0215168. PubMed ID: 31009488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology.
    Deliyski DD; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2015 Oct; 58(5):1488-92. PubMed ID: 26375398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels.
    Maurer D; Hess M; Gross M
    Ann Otol Rhinol Laryngol; 1996 Dec; 105(12):975-81. PubMed ID: 8973285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adductory Vocal Fold Kinematic Trajectories During Conventional Versus High-Speed Videoendoscopy.
    Diaz-Cadiz M; McKenna VS; Vojtech JM; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1685-1706. PubMed ID: 31181175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vocal Fold Vibratory Changes Following Surgical Intervention.
    Chen W; Woo P; Murry T
    J Voice; 2016 Mar; 30(2):224-7. PubMed ID: 26028368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal classification of vocal fold dynamics by a multimass model comprising time-dependent parameters.
    Wurzbacher T; Döllinger M; Schwarz R; Hoppe U; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 Apr; 123(4):2324-34. PubMed ID: 18397036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic diagnosis of vocal fold paresis by employing phonovibrogram features and machine learning methods.
    Voigt D; Döllinger M; Yang A; Eysholdt U; Lohscheller J
    Comput Methods Programs Biomed; 2010 Sep; 99(3):275-88. PubMed ID: 20138386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital high-speed videos.
    Lohscheller J; Toy H; Rosanowski F; Eysholdt U; Döllinger M
    Med Image Anal; 2007 Aug; 11(4):400-13. PubMed ID: 17544839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.
    Mehta DD; Deliyski DD; Quatieri TF; Hillman RE
    J Speech Lang Hear Res; 2011 Feb; 54(1):47-54. PubMed ID: 20699347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.
    Tokuda IT; Horácek J; Svec JG; Herzel H
    J Acoust Soc Am; 2007 Jul; 122(1):519-31. PubMed ID: 17614509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective quantification of pre- and postphonosurgery vocal fold vibratory characteristics using high-speed videoendoscopy and a harmonic waveform model.
    Ikuma T; Kunduk M; McWhorter AJ
    J Speech Lang Hear Res; 2014 Jun; 57(3):743-57. PubMed ID: 24167233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new generation videokymography for routine clinical vocal fold examination.
    Qiu Q; Schutte HK
    Laryngoscope; 2006 Oct; 116(10):1824-8. PubMed ID: 17003719
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of four distinct glottal configurations in classical singing--a pilot study.
    Herbst CT; Ternström S; Svec JG
    J Acoust Soc Am; 2009 Mar; 125(3):EL104-9. PubMed ID: 19275279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficacy of Videostroboscopy and High-Speed Videoendoscopy to Obtain Functional Outcomes From Perioperative Ratings in Patients With Vocal Fold Mass Lesions.
    Powell ME; Deliyski DD; Zeitels SM; Burns JA; Hillman RE; Gerlach TT; Mehta DD
    J Voice; 2020 Sep; 34(5):769-782. PubMed ID: 31005449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic tracing of vocal-fold motion from high-speed digital images.
    Yan Y; Chen X; Bless D
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1394-400. PubMed ID: 16830943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitigation of temporal aliasing via harmonic modeling of laryngeal waveforms in high-speed videoendoscopy.
    Ikuma T; Kunduk M; McWhorter AJ
    J Acoust Soc Am; 2012 Sep; 132(3):1636-45. PubMed ID: 22978892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new instrument for intraoperative assessment of individual vocal folds.
    Heaton JT; Kobler JB; Hillman RE; Zeitels SM
    Laryngoscope; 2005 Jul; 115(7):1223-9. PubMed ID: 15995511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.