BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 16102743)

  • 1. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid.
    Maves L; Kimmel CB
    Dev Biol; 2005 Sep; 285(2):593-605. PubMed ID: 16102743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish.
    Hernandez RE; Rikhof HA; Bachmann R; Moens CB
    Development; 2004 Sep; 131(18):4511-20. PubMed ID: 15342476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoic acid is required for endodermal pouch morphogenesis and not for pharyngeal endoderm specification.
    Kopinke D; Sasine J; Swift J; Stephens WZ; Piotrowski T
    Dev Dyn; 2006 Oct; 235(10):2695-709. PubMed ID: 16871626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent roles for retinoic acid in segmentation and neuronal differentiation in the zebrafish hindbrain.
    Linville A; Gumusaneli E; Chandraratna RA; Schilling TF
    Dev Biol; 2004 Jun; 270(1):186-99. PubMed ID: 15136149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-CoR is required for patterning the anterior-posterior axis of zebrafish hindbrain by actively repressing retinoid signaling.
    Xu F; Li K; Tian M; Hu P; Song W; Chen J; Gao X; Zhao Q
    Mech Dev; 2009 Oct; 126(10):771-80. PubMed ID: 19735730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain.
    Riley BB; Chiang MY; Storch EM; Heck R; Buckles GR; Lekven AC
    Dev Dyn; 2004 Oct; 231(2):278-91. PubMed ID: 15366005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The vHNF1 homeodomain protein establishes early rhombomere identity by direct regulation of Kreisler expression.
    Kim FA; Sing l A; Kaneko T; Bieman M; Stallwood N; Sadl VS; Cordes SP
    Mech Dev; 2005 Dec; 122(12):1300-9. PubMed ID: 16274963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early requirement for fgf8 function during hindbrain pattern formation in zebrafish.
    Wiellette EL; Sive H
    Dev Dyn; 2004 Feb; 229(2):393-9. PubMed ID: 14745965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paralog group 1 hox genes regulate rhombomere 5/6 expression of vhnf1, a repressor of rostral hindbrain fates, in a meis-dependent manner.
    Choe SK; Sagerström CG
    Dev Biol; 2004 Jul; 271(2):350-61. PubMed ID: 15223339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression.
    Sturgeon K; Kaneko T; Biemann M; Gauthier A; Chawengsaksophak K; Cordes SP
    Development; 2011 Jan; 138(1):65-74. PubMed ID: 21098558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct regulation of vHnf1 by retinoic acid signaling and MAF-related factors in the neural tube.
    Pouilhe M; Gilardi-Hebenstreit P; Desmarquet-Trin Dinh C; Charnay P
    Dev Biol; 2007 Sep; 309(2):344-57. PubMed ID: 17669392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain.
    Sun Z; Hopkins N
    Genes Dev; 2001 Dec; 15(23):3217-29. PubMed ID: 11731484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of thyroid hormone receptor alpha 1 during zebrafish embryogenesis disrupts hindbrain patterning and implicates retinoic acid receptors in the control of hox gene expression.
    Essner JJ; Johnson RG; Hackett PB
    Differentiation; 1999 Jul; 65(1):1-11. PubMed ID: 10448709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the neckless phenotype: influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain.
    Begemann G; Marx M; Mebus K; Meyer A; Bastmeyer M
    Dev Biol; 2004 Jul; 271(1):119-29. PubMed ID: 15196955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain.
    Murakami Y; Pasqualetti M; Takio Y; Hirano S; Rijli FM; Kuratani S
    Development; 2004 Mar; 131(5):983-95. PubMed ID: 14973269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development.
    Hernandez RE; Putzke AP; Myers JP; Margaretha L; Moens CB
    Development; 2007 Jan; 134(1):177-87. PubMed ID: 17164423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of retinaldehyde dehydrogenase II and sequential activation of 5' Hoxb genes in the mouse caudal hindbrain.
    Oosterveen T; Meijlink F; Deschamps J
    Gene Expr Patterns; 2004 May; 4(3):243-7. PubMed ID: 15053971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. vhnf1 and Fgf signals synergize to specify rhombomere identity in the zebrafish hindbrain.
    Wiellette EL; Sive H
    Development; 2003 Aug; 130(16):3821-9. PubMed ID: 12835397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graded retinoid responses in the developing hindbrain.
    Godsave SF; Koster CH; Getahun A; Mathu M; Hooiveld M; van der Wees J; Hendriks J; Durston AJ
    Dev Dyn; 1998 Sep; 213(1):39-49. PubMed ID: 9733099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Krox20 hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements.
    Chomette D; Frain M; Cereghini S; Charnay P; Ghislain J
    Development; 2006 Apr; 133(7):1253-62. PubMed ID: 16495311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.