BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16102813)

  • 1. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord.
    King VR; Phillips JB; Hunt-Grubbe H; Brown R; Priestley JV
    Biomaterials; 2006 Jan; 27(3):485-96. PubMed ID: 16102813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of treatment with antibodies to transforming growth factor beta1 and beta2 following spinal cord damage in the adult rat.
    King VR; Phillips JB; Brown RA; Priestley JV
    Neuroscience; 2004; 126(1):173-83. PubMed ID: 15145083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury.
    Stokols S; Tuszynski MH
    Biomaterials; 2006 Jan; 27(3):443-51. PubMed ID: 16099032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth.
    Kuhlengel KR; Bunge MB; Bunge RP; Burton H
    J Comp Neurol; 1990 Mar; 293(1):74-91. PubMed ID: 1690226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat.
    King VR; Henseler M; Brown RA; Priestley JV
    Exp Neurol; 2003 Aug; 182(2):383-98. PubMed ID: 12895449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell proliferation and replacement following contusive spinal cord injury.
    Zai LJ; Wrathall JR
    Glia; 2005 May; 50(3):247-57. PubMed ID: 15739189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury.
    Jain A; Kim YT; McKeon RJ; Bellamkonda RV
    Biomaterials; 2006 Jan; 27(3):497-504. PubMed ID: 16099038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of human hair keratin implant on oligodendrocyte proliferation and differentiation in rats with acute spinal cord injury].
    Xu XJ; Piao YJ; Huo X
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Jun; 23(6):542-5. PubMed ID: 12810370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury.
    King VR; Alovskaya A; Wei DY; Brown RA; Priestley JV
    Biomaterials; 2010 May; 31(15):4447-56. PubMed ID: 20206381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy.
    Bunge MB; Holets VR; Bates ML; Clarke TS; Watson BD
    Exp Neurol; 1994 May; 127(1):76-93. PubMed ID: 8200439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination.
    Mothe AJ; Tator CH
    Exp Neurol; 2008 Sep; 213(1):176-90. PubMed ID: 18586031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of neuropsin and protease M/neurosin in oligodendrocytes after injury to the spinal cord.
    Terayama R; Bando Y; Takahashi T; Yoshida S
    Glia; 2004 Nov; 48(2):91-101. PubMed ID: 15378660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat.
    King VR; Hewazy D; Alovskaya A; Phillips JB; Brown RA; Priestley JV
    Neuroscience; 2010 Jun; 168(2):523-30. PubMed ID: 20347014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.