BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16103122)

  • 1. A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor.
    Pereira R; Cerione RA
    J Biol Chem; 2005 Oct; 280(42):35696-703. PubMed ID: 16103122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B; Natochin M; Artemyev NO
    Mol Vis; 2006 May; 12():492-8. PubMed ID: 16735989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling of GTP binding from target stimulation by a single mutation in the transducin alpha subunit.
    Mittal R; Erickson JW; Cerione RA
    Science; 1996 Mar; 271(5254):1413-6. PubMed ID: 8596913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication between switch II and switch III of the transducin alpha subunit is essential for target activation.
    Li Q; Cerione RA
    J Biol Chem; 1997 Aug; 272(35):21673-6. PubMed ID: 9268292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbing the linker regions of the alpha-subunit of transducin: a new class of constitutively active GTP-binding proteins.
    Majumdar S; Ramachandran S; Cerione RA
    J Biol Chem; 2004 Sep; 279(38):40137-45. PubMed ID: 15271992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dominant-negative Galpha mutant that traps a stable rhodopsin-Galpha-GTP-betagamma complex.
    Ramachandran S; Cerione RA
    J Biol Chem; 2011 Apr; 286(14):12702-11. PubMed ID: 21285355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain-of-function screen of α-transducin identifies an essential phenylalanine residue necessary for full effector activation.
    Milano SK; Wang C; Erickson JW; Cerione RA; Ramachandran S
    J Biol Chem; 2018 Nov; 293(46):17941-17952. PubMed ID: 30266806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan W207 in transducin T alpha is the fluorescence sensor of the G protein activation switch and is involved in the effector binding.
    Faurobert E; Otto-Bruc A; Chardin P; Chabre M
    EMBO J; 1993 Nov; 12(11):4191-8. PubMed ID: 8223434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction sites of the C-terminal region of the cGMP phosphodiesterase inhibitory subunit with the GDP-bound transducin alpha-subunit.
    Liu Y; Arshavsky VY; Ruoho AE
    Biochem J; 1999 Jan; 337 ( Pt 2)(Pt 2):281-8. PubMed ID: 9882626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins.
    Majumdar S; Ramachandran S; Cerione RA
    J Biol Chem; 2006 Apr; 281(14):9219-26. PubMed ID: 16469737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin.
    Onrust R; Herzmark P; Chi P; Garcia PD; Lichtarge O; Kingsley C; Bourne HR
    Science; 1997 Jan; 275(5298):381-4. PubMed ID: 8994033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of transducin with iodoacetic acid: transducin-alpha carboxymethylated at Cys(347) allows transducin binding to Light-activated rhodopsin but prevents its release in the presence of GTP.
    Bubis J; Ortiz JO; Möller C
    Arch Biochem Biophys; 2001 Nov; 395(2):146-57. PubMed ID: 11697851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of an intermediate activation state for transducin by a fluorescent GTP analogue.
    Ramachandran S; Cerione RA
    Biochemistry; 2004 Jul; 43(27):8778-86. PubMed ID: 15236586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mutation in the switch 3 region of Gsalpha in a patient with Albright hereditary osteodystrophy impairs GDP binding and receptor activation.
    Warner DR; Weng G; Yu S; Matalon R; Weinstein LS
    J Biol Chem; 1998 Sep; 273(37):23976-83. PubMed ID: 9727013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays.
    Ernst OP; Hofmann KP; Sakmar TP
    J Biol Chem; 1995 May; 270(18):10580-6. PubMed ID: 7737995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeling of the beta gamma subunit complex of transducin with an environmentally sensitive cysteine reagent. Use of fluorescence spectroscopy to monitor transducin subunit interactions.
    Phillips WJ; Cerione RA
    J Biol Chem; 1991 Jun; 266(17):11017-24. PubMed ID: 2040617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G alpha t/G alpha i1 chimeras used to define structural basis of specific functions of G alpha t.
    Skiba NP; Thomas TO; Hamm HE
    Methods Enzymol; 2000; 315():502-24. PubMed ID: 10736723
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
    Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S
    J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The function of interdomain interactions in controlling nucleotide exchange rates in transducin.
    Marin EP; Krishna AG; Archambault V; Simuni E; Fu WY; Sakmar TP
    J Biol Chem; 2001 Jun; 276(26):23873-80. PubMed ID: 11290746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies.
    Otto-Bruc A; Antonny B; Vuong TM; Chardin P; Chabre M
    Biochemistry; 1993 Aug; 32(33):8636-45. PubMed ID: 8395212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.