BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16103711)

  • 21. [Evolution of IGRA researches].
    Ariga H; Harada N
    Kekkaku; 2008 Sep; 83(9):641-52. PubMed ID: 18979999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Screening and analysis of in vivo induced genes of Mycobacterium tuberculosis].
    Zhang ZD; Li ZH; DU BP; Jia HY; Liu ZQ; Chen X; Huang HR; Xing AY; Gu SX; Ma Y
    Zhonghua Yi Xue Za Zhi; 2008 Jan; 88(3):189-93. PubMed ID: 18361819
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defining the mandate of tuberculosis research in a postgenomic era.
    Chakhaiyar P; Hasnain SE
    Med Princ Pract; 2004; 13(4):177-84. PubMed ID: 15181320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of genomics in bacterial vaccine discovery: a decade in review.
    Zagursky RJ; Anderson AS
    Curr Opin Pharmacol; 2008 Oct; 8(5):632-8. PubMed ID: 18625342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning, expression, and purification of recombinant protein from a single synthetic multivalent construct of Mycobacterium tuberculosis.
    Fang CM; Zainuddin ZF; Musa M; Thong KL
    Protein Expr Purif; 2006 Jun; 47(2):341-7. PubMed ID: 16510294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear expression elements: a rapid, in vivo, method to screen for gene functions.
    Sykes KF; Johnston SA
    Nat Biotechnol; 1999 Apr; 17(4):355-9. PubMed ID: 10207883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immune profiling of leprosy and tuberculosis patients to 15-mer peptides of Mycobacterium leprae and M. tuberculosis GroES in a BCG vaccinated area: implications for development of vaccine and diagnostic reagents.
    Hussain R; Shahid F; Zafar S; Dojki M; Dockrell HM
    Immunology; 2004 Apr; 111(4):462-71. PubMed ID: 15056384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing antibacterial vaccines in genomics and proteomics era.
    Kaushik DK; Sehgal D
    Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defining putative T cell epitopes from PE and PPE families of proteins of Mycobacterium tuberculosis with vaccine potential.
    Chaitra MG; Hariharaputran S; Chandra NR; Shaila MS; Nayak R
    Vaccine; 2005 Jan; 23(10):1265-72. PubMed ID: 15652669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [From genetics to genomics in the rational design of new Mycobacterium tuberculosis vaccines].
    Bocanegra-García V; Valencia-Delgadillo J; Cruz-Pulido W; Cantú-Ramírez R; Rivera-Sánchez G; Palma-Nicolás JP
    Enferm Infecc Microbiol Clin; 2011 Oct; 29(8):609-14. PubMed ID: 21684635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA vaccine constructs expressing Mycobacterium tuberculosis-specific genes induce immune responses.
    Hanif SN; Al-Attiyah R; Mustafa AS
    Scand J Immunol; 2010 Nov; 72(5):408-15. PubMed ID: 21039735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. T-cell recognition of mycobacterial antigens.
    Vordermeier HM
    Eur Respir J Suppl; 1995 Sep; 20():657s-667s. PubMed ID: 8590566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and expression of a cell wall associated protein gene of Mycobacterium tuberculosis.
    Mohamed AJ; Jayaraman G
    Indian J Pathol Microbiol; 1999 Apr; 42(2):135-43. PubMed ID: 10639772
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-derived vaccines.
    De Groot AS; Rappuoli R
    Expert Rev Vaccines; 2004 Feb; 3(1):59-76. PubMed ID: 14761244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure.
    Delogu G; Pusceddu C; Bua A; Fadda G; Brennan MJ; Zanetti S
    Mol Microbiol; 2004 May; 52(3):725-33. PubMed ID: 15101979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TB subunit vaccines--putting the pieces together.
    Andersen P; Doherty TM
    Microbes Infect; 2005 May; 7(5-6):911-21. PubMed ID: 15878836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developing vaccines in the era of genomics: a decade of reverse vaccinology.
    Seib KL; Zhao X; Rappuoli R
    Clin Microbiol Infect; 2012 Oct; 18 Suppl 5():109-16. PubMed ID: 22882709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-based approaches to vaccine development.
    Mora M; Telford JL
    J Mol Med (Berl); 2010 Feb; 88(2):143-7. PubMed ID: 20066390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative mycobacterial genomics as a tool for drug target and antigen discovery.
    Cole ST
    Eur Respir J Suppl; 2002 Jul; 36():78s-86s. PubMed ID: 12168750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial pathogen genomes--new strategies for identifying therapeutics and vaccine targets.
    Smith DR
    Trends Biotechnol; 1996 Aug; 14(8):290-3. PubMed ID: 8987460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.