These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Variants of 3(10)-helices in proteins. Pal L; Basu G; Chakrabarti P Proteins; 2002 Aug; 48(3):571-9. PubMed ID: 12112680 [TBL] [Abstract][Full Text] [Related]
3. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive analysis of the helix-X-helix motif in soluble proteins. Deville J; Rey J; Chabbert M Proteins; 2008 Jul; 72(1):115-35. PubMed ID: 18214950 [TBL] [Abstract][Full Text] [Related]
5. Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation. Pal L; Chakrabarti P; Basu G J Mol Biol; 2003 Feb; 326(1):273-91. PubMed ID: 12547209 [TBL] [Abstract][Full Text] [Related]
7. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
8. Non-protein amino acids in the design of secondary structure scaffolds. Mahalakshmi R; Balaram P Methods Mol Biol; 2006; 340():71-94. PubMed ID: 16957333 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic characterization of helical secondary structures in 2:1 and 1:2 alpha/beta-peptides. Choi SH; Guzei IA; Spencer LC; Gellman SH J Am Chem Soc; 2009 Mar; 131(8):2917-24. PubMed ID: 19203269 [TBL] [Abstract][Full Text] [Related]
10. Efficient access to enantiopure γ4-amino acids with proteinogenic side-chains and structural investigation of γ4-Asn and γ4-Ser in hybrid peptide helices. Jadhav SV; Misra R; Singh SK; Gopi HN Chemistry; 2013 Nov; 19(48):16256-62. PubMed ID: 24151124 [TBL] [Abstract][Full Text] [Related]
11. Expanded turn conformations: characterization and sequence-structure correspondence in alpha-turns with implications in helix folding. Dasgupta B; Pal L; Basu G; Chakrabarti P Proteins; 2004 May; 55(2):305-15. PubMed ID: 15048823 [TBL] [Abstract][Full Text] [Related]
12. [A comparative analysis of interhelical polar interactions of various alpha-helix packings in proteins]. Efimov AV; Kondratova MS Mol Biol (Mosk); 2003; 37(3):515-21. PubMed ID: 12815960 [TBL] [Abstract][Full Text] [Related]
13. Strand-loop-strand motifs: prediction of hairpins and diverging turns in proteins. Kuhn M; Meiler J; Baker D Proteins; 2004 Feb; 54(2):282-8. PubMed ID: 14696190 [TBL] [Abstract][Full Text] [Related]
14. Patterns and conformations of commonly occurring supersecondary structures (basic motifs) in protein data bank. Sun Z; Jiang B J Protein Chem; 1996 Oct; 15(7):675-90. PubMed ID: 8968959 [TBL] [Abstract][Full Text] [Related]
15. Understanding the role of the topology in protein folding by computational inverse folding experiments. Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970 [TBL] [Abstract][Full Text] [Related]
17. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006 [TBL] [Abstract][Full Text] [Related]
18. On residues in the disallowed region of the Ramachandran map. Pal D; Chakrabarti P Biopolymers; 2002 Mar; 63(3):195-206. PubMed ID: 11787007 [TBL] [Abstract][Full Text] [Related]
19. Periodicity in alpha-helix lengths and C-capping preferences. Penel S; Morrison RG; Mortishire-Smith RJ; Doig AJ J Mol Biol; 1999 Nov; 293(5):1211-9. PubMed ID: 10547296 [TBL] [Abstract][Full Text] [Related]
20. Short hydrogen bonds in proteins. Rajagopal S; Vishveshwara S FEBS J; 2005 Apr; 272(8):1819-32. PubMed ID: 15819878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]