These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16104148)

  • 1. [The research on linear control of pneumatic artificial muscles used in medical robots].
    Lin LM; Tian SP; Yan GZ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Jan; 26(1):7-9, 13. PubMed ID: 16104148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constrained incremental predictive controller design for a flexible joint robot.
    Ghahramani NO; Towhidkhah F
    ISA Trans; 2009 Jul; 48(3):321-6. PubMed ID: 19278677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions.
    Mirvakili SM; Sim D; Hunter IW; Langer R
    Sci Robot; 2020 Apr; 5(41):. PubMed ID: 33022626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.
    Wickramatunge KC; Leephakpreeda T
    ISA Trans; 2013 Nov; 52(6):825-34. PubMed ID: 23871151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A study on the interpolation algorithm for the serial-parallel robot-controlled HIFU].
    Yu DY; Luo F; Fan LZ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):241-4. PubMed ID: 17039926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research on applications of micromachine technology in medical engineering].
    Lin L; Yan G; Song Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 1999 Sep; 23(5):258-64, 307. PubMed ID: 12583069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A patient transfer apparatus between bed and stretcher.
    Wang H; Kasagami F
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):60-7. PubMed ID: 18270082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical network interactions in distributed control of robots.
    Buscarino A; Fortuna L; Frasca M; Rizzo A
    Chaos; 2006 Mar; 16(1):015116. PubMed ID: 16599782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time myoprocessors for a neural controlled powered exoskeleton arm.
    Cavallaro EE; Rosen J; Perry JC; Burns S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2387-96. PubMed ID: 17073345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.
    Pillsbury TE; Kothera CS; Wereley NM
    Bioinspir Biomim; 2015 Sep; 10(5):055006. PubMed ID: 26414160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel-powered artificial muscles.
    Ebron VH; Yang Z; Seyer DJ; Kozlov ME; Oh J; Xie H; Razal J; Hall LJ; Ferraris JP; Macdiarmid AG; Baughman RH
    Science; 2006 Mar; 311(5767):1580-3. PubMed ID: 16543453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial ears for a biomimetic sonarhead: from multiple reflectors to surfaces.
    Carmena JM; Kämpchen N; Kim D; Hallam JC
    Artif Life; 2001; 7(2):147-69. PubMed ID: 11580878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential applications of medical and non-medical robots for neurosurgical applications.
    Alric M; Chapelle F; Lemaire JJ; Gogu G
    Minim Invasive Ther Allied Technol; 2009; 18(4):193-216. PubMed ID: 19548175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a rotary passive viscoelastic joint for wearable robots.
    Carpino G; Accoto D; Di Palo M; Tagliamonte NL; Sergi F; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975356. PubMed ID: 22275560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smart Pneumatic Artificial Muscle Using a Bend Sensor like a Human Muscle with a Muscle Spindle.
    Saga N; Shimada K; Inamori D; Saito N; Satoh T; Nagase JY
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cellular control architecture for compliant artificial muscles.
    Odhner LU; Ueda J; Asada HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2730-3. PubMed ID: 17946978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.