These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16104702)

  • 1. Dual modulation of a molecular switch with exceptional chiroptical properties.
    Wang ZY; Todd EK; Meng XS; Gao JP
    J Am Chem Soc; 2005 Aug; 127(33):11552-3. PubMed ID: 16104702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral organic radical cation and dication. A reversible chiroptical redox switch based on stepwise transformation of optically active tetrakis(p-alkoxyphenyl)ethylenes to radical cations and dications.
    Mori T; Inoue Y
    J Phys Chem A; 2005 Mar; 109(12):2728-40. PubMed ID: 16833584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.
    Bisoyi HK; Li Q
    Acc Chem Res; 2014 Oct; 47(10):3184-95. PubMed ID: 25181560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photomodulation of the chiroptical properties of new chiral methacrylic polymers with side chain azobenzene moieties.
    Angiolini L; Bozio R; Giorgini L; Pedron D; Turco G; Daurù A
    Chemistry; 2002 Sep; 8(18):4241-7. PubMed ID: 12298015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically-driven chiroptical switches based on axially dissymmetric 1,1'-binaphthyl and electrochromic viologens: synthesis and optical properties.
    Deng J; Song N; Zhou Q; Su Z
    Org Lett; 2007 Dec; 9(26):5393-6. PubMed ID: 18047352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices.
    Alam MZ; Yoshioka T; Ogata T; Nonaka T; Kurihara S
    Chemistry; 2007; 13(9):2641-7. PubMed ID: 17201002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, chiroptical properties, and solid-state structure determination of two new chiral dipyrrin difluoroboryl chelates.
    Gossauer A; Nydegger F; Kiss T; Sleziak R; Stoeckli-Evans H
    J Am Chem Soc; 2004 Feb; 126(6):1772-80. PubMed ID: 14871109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomerization reactions on single adsorbed molecules.
    Morgenstern K
    Acc Chem Res; 2009 Feb; 42(2):213-23. PubMed ID: 19138111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New heterocyclic tetrathiafulvalene compounds with an azobenzene moiety: photomodulation of the electron-donating ability of the tetrathiafulvalene moiety.
    Wen G; Zhang D; Huang Y; Zhao R; Zhu L; Shuai Z; Zhu D
    J Org Chem; 2007 Aug; 72(16):6247-50. PubMed ID: 17616147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar chiral azobenzenophanes as chiroptic switches for photon mode reversible reflection color control in induced chiral nematic liquid crystals.
    Mathews M; Tamaoki N
    J Am Chem Soc; 2008 Aug; 130(34):11409-16. PubMed ID: 18680250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and chiroptical properties of chiral azoaromatic dendrimers with a C3-symmetrical core.
    Angiolini L; Benelli T; Giorgini L
    Chirality; 2010 Jan; 22(1):99-109. PubMed ID: 19387991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength.
    Loudwig S; Bayley H
    J Am Chem Soc; 2006 Sep; 128(38):12404-5. PubMed ID: 16984176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-triggered chiroptical molecular switches.
    Canary JW
    Chem Soc Rev; 2009 Mar; 38(3):747-56. PubMed ID: 19322467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azobenzene as photoresponsive conformational switch in cyclic peptides.
    Renner C; Kusebauch U; Löweneck M; Milbradt AG; Moroder L
    J Pept Res; 2005 Jan; 65(1):4-14. PubMed ID: 15686529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon control of liquid motion on reversibly photoresponsive surfaces.
    Yang D; Piech M; Bell NS; Gust D; Vail S; Garcia AA; Schneider J; Park CD; Hayes MA; Picraux ST
    Langmuir; 2007 Oct; 23(21):10864-72. PubMed ID: 17803327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-controlled supramolecular helicity of a liquid crystalline phase using a helical polymer functionalized with a single chiroptical molecular switch.
    Pijper D; Jongejan MG; Meetsma A; Feringa BL
    J Am Chem Soc; 2008 Apr; 130(13):4541-52. PubMed ID: 18335940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced acceleration of the effluent rate of developing solvents in azobenzene-tethered silica gel.
    Fujiwara M; Akiyama M; Hata M; Shiokawa K; Nomura R
    ACS Nano; 2008 Aug; 2(8):1671-81. PubMed ID: 19206371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiroptical switches and sensors based on ligand conformational changes in labile coordination complexes.
    Canary JW; Zahn S; Chiu YH; dos Santos O; Liu J; Zhu L
    Enantiomer; 2000; 5(3-4):397-403. PubMed ID: 11174180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiroptical inversion induced by rotation of a carbon-carbon single bond: an experimental and theoretical study.
    Lu W; Du G; Liu K; Jiang L; Ling J; Shen Z
    J Phys Chem A; 2014 Jan; 118(1):283-92. PubMed ID: 24341567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and chiroptical properties of a helical poly(phenylacetylene) bearing optically active pyrene pendants.
    Lin H; Morino K; Yashima E
    Chirality; 2008 Mar; 20(3-4):386-92. PubMed ID: 17724655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.