These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16104762)

  • 1. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives.
    Yamaguchi S; Yoshimura I; Kohira T; Tamaru S; Hamachi I
    J Am Chem Soc; 2005 Aug; 127(33):11835-41. PubMed ID: 16104762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three distinct read-out modes for enzyme activity can operate in a semi-wet supramolecular hydrogel.
    Tamaru S; Kiyonaka S; Hamachi I
    Chemistry; 2005 Dec; 11(24):7294-304. PubMed ID: 16196071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition and fluorescence sensing of monophosphorylated peptides in aqueous solution by bis(zinc(II)-dipicolylamine)-based artificial receptors.
    Ojida A; Mito-oka Y; Sada K; Hamachi I
    J Am Chem Soc; 2004 Mar; 126(8):2454-63. PubMed ID: 14982454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip.
    Yoshimura I; Miyahara Y; Kasagi N; Yamane H; Ojida A; Hamachi I
    J Am Chem Soc; 2004 Oct; 126(39):12204-5. PubMed ID: 15453719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates.
    Koshi Y; Nakata E; Yamane H; Hamachi I
    J Am Chem Soc; 2006 Aug; 128(32):10413-22. PubMed ID: 16895406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular hydrogel-based protein and chemosensor array.
    Ikeda M; Ochi R; Hamachi I
    Lab Chip; 2010 Dec; 10(24):3325-34. PubMed ID: 20862441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple but effective way to sense pyrophosphate and inorganic phosphate by fluorescence changes.
    Lee HN; Swamy KM; Kim SK; Kwon JY; Kim Y; Kim SJ; Yoon YJ; Yoon J
    Org Lett; 2007 Jan; 9(2):243-6. PubMed ID: 17217275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-wet peptide/protein array using supramolecular hydrogel.
    Kiyonaka S; Sada K; Yoshimura I; Shinkai S; Kato N; Hamachi I
    Nat Mater; 2004 Jan; 3(1):58-64. PubMed ID: 14661016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial receptors designed for intracellular delivery of anionic phosphate derivatives.
    Kohira T; Honda K; Ojida A; Hamachi I
    Chembiochem; 2008 Mar; 9(5):698-701. PubMed ID: 18253939
    [No Abstract]   [Full Text] [Related]  

  • 10. Bis(Dpa-Zn(II)) appended xanthone: excitation ratiometric chemosensor for phosphate anions.
    Ojida A; Nonaka H; Miyahara Y; Tamaru S; Sada K; Hamachi I
    Angew Chem Int Ed Engl; 2006 Aug; 45(33):5518-21. PubMed ID: 16847978
    [No Abstract]   [Full Text] [Related]  

  • 11. Polydiacetylene-based colorimetric self-assembled vesicular receptors for biological phosphate ion recognition.
    Jose DA; Stadlbauer S; König B
    Chemistry; 2009 Jul; 15(30):7404-12. PubMed ID: 19551781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent sensing of IP3 with a Trifurcate Zn(II)-containing chemosensing ensemble system.
    Oh DJ; Ahn KH
    Org Lett; 2008 Aug; 10(16):3539-42. PubMed ID: 18616344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex.
    Khatua S; Choi SH; Lee J; Kim K; Do Y; Churchill DG
    Inorg Chem; 2009 Apr; 48(7):2993-9. PubMed ID: 19265392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor.
    Ojida A; Takashima I; Kohira T; Nonaka H; Hamachi I
    J Am Chem Soc; 2008 Sep; 130(36):12095-101. PubMed ID: 18700758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linking strategy for molecular recognition and fluorescent sensing of a multi-phosphorylated peptide in aqueous solution.
    Ojida A; Inoue MA; Mito-Oka Y; Hamachi I
    J Am Chem Soc; 2003 Aug; 125(34):10184-5. PubMed ID: 12926936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(II)-Dpa complexes.
    Sakamoto T; Ojida A; Hamachi I
    Chem Commun (Camb); 2009 Jan; (2):141-52. PubMed ID: 19099054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast responsive crystalline colloidal array photonic crystal glucose sensors.
    Ben-Moshe M; Alexeev VL; Asher SA
    Anal Chem; 2006 Jul; 78(14):5149-57. PubMed ID: 16841941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics.
    Gamsey S; Suri JT; Wessling RA; Singaram B
    Langmuir; 2006 Oct; 22(21):9067-74. PubMed ID: 17014156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A heteroditopic fluoroionophoric platform for constructing fluorescent probes with large dynamic ranges for zinc ions.
    Zhang L; Clark RJ; Zhu L
    Chemistry; 2008; 14(9):2894-903. PubMed ID: 18232042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly selective and sensitive fluorescence sensing system for distinction between diphosphate and nucleoside triphosphates.
    Lee JH; Jeong AR; Jung JH; Park CM; Hong JI
    J Org Chem; 2011 Jan; 76(2):417-23. PubMed ID: 21174420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.