BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16104784)

  • 1. Isolation and composition of chromoplasts from tomatoes.
    Hansen LU; Chiu MC
    J Agric Food Chem; 2005 Aug; 53(17):6678-82. PubMed ID: 16104784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Chromoplasts and Suborganellar Compartments from Tomato and Bell Pepper Fruit.
    Barsan C; Kuntz M; Pech JC
    Methods Mol Biol; 2017; 1511():61-71. PubMed ID: 27730602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.
    Lenucci MS; Serrone L; De Caroli M; Fraser PD; Bramley PM; Piro G; Dalessandro G
    J Agric Food Chem; 2012 Feb; 60(7):1764-75. PubMed ID: 22264157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit.
    Simkin AJ; Gaffé J; Alcaraz JP; Carde JP; Bramley PM; Fraser PD; Kuntz M
    Phytochemistry; 2007 Jun; 68(11):1545-56. PubMed ID: 17466343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).
    Schweiggert RM; Steingass CB; Heller A; Esquivel P; Carle R
    Planta; 2011 Nov; 234(5):1031-44. PubMed ID: 21706336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts.
    Pateraki I; Renato M; Azcón-Bieto J; Boronat A
    Plant J; 2013 Apr; 74(1):74-85. PubMed ID: 23302027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastid and stromule morphogenesis in tomato.
    Pyke KA; Howells CA
    Ann Bot; 2002 Nov; 90(5):559-66. PubMed ID: 12466096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractionation of Tomato Fruit Chromoplasts.
    De Pourcq K; Boronat A
    Methods Mol Biol; 2020; 2083():189-197. PubMed ID: 31745922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of the tomato chromoplast revealed by proteomic analysis.
    Barsan C; Sanchez-Bel P; Rombaldi C; Egea I; Rossignol M; Kuntz M; Zouine M; Latché A; Bouzayen M; Pech JC
    J Exp Bot; 2010 May; 61(9):2413-31. PubMed ID: 20363867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato.
    Luo Z; Zhang J; Li J; Yang C; Wang T; Ouyang B; Li H; Giovannoni J; Ye Z
    New Phytol; 2013 Apr; 198(2):442-452. PubMed ID: 23406468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit.
    Chen BY; Wang Y; Janes HW
    Plant Physiol; 1998 Jan; 116(1):101-6. PubMed ID: 9449839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties.
    Coyago-Cruz E; Corell M; Moriana A; Mapelli-Brahm P; Hernanz D; Stinco CM; Beltrán-Sinchiguano E; Meléndez-Martínez AJ
    Food Chem; 2019 Mar; 277():480-489. PubMed ID: 30502174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.
    Egea I; Bian W; Barsan C; Jauneau A; Pech JC; Latché A; Li Z; Chervin C
    Ann Bot; 2011 Aug; 108(2):291-7. PubMed ID: 21788376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein.
    Kahlau S; Bock R
    Plant Cell; 2008 Apr; 20(4):856-74. PubMed ID: 18441214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.
    D'Andrea L; Amenós M; Rodríguez-Concepción M
    Methods Mol Biol; 2014; 1153():227-32. PubMed ID: 24777801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4.
    Wang S; Liu J; Feng Y; Niu X; Giovannoni J; Liu Y
    Plant J; 2008 Jul; 55(1):89-103. PubMed ID: 18363785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening.
    Renato M; Pateraki I; Boronat A; Azcón-Bieto J
    Plant Physiol; 2014 Oct; 166(2):920-33. PubMed ID: 25125503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The suffulta mutation in tomato reveals a novel method of plastid replication during fruit ripening.
    Forth D; Pyke KA
    J Exp Bot; 2006; 57(9):1971-9. PubMed ID: 16595580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit.
    Bruno AK; Wetzel CM
    J Exp Bot; 2004 Dec; 55(408):2541-8. PubMed ID: 15475376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The esterification of xanthophylls in Solanum lycopersicum (tomato) chromoplasts; the role of a non-specific acyltransferase.
    Lewis ER; Nogueira M; Enfissi EMA; Fraser PD
    Phytochemistry; 2021 Nov; 191():112912. PubMed ID: 34450419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.