These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16104795)

  • 1. Development of structure-taste relationships for monosubstituted phenylsulfamate sweeteners using classification and regression tree (CART) analysis.
    Kelly DP; Spillane WJ; Newell J
    J Agric Food Chem; 2005 Aug; 53(17):6750-8. PubMed ID: 16104795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-taste relationships for disubstituted phenylsulfamate tastants using classification and regression tree (CART) analysis.
    Spillane WJ; Kelly DP; Curran PJ; Feeney BG
    J Agric Food Chem; 2006 Aug; 54(16):5996-6004. PubMed ID: 16881707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of structure-taste relationships for thiazolyl-, benzothiazolyl-, and thiadiazolylsulfamates.
    Spillane WJ; Coyle CM; Feeney BG; Thompson EF
    J Agric Food Chem; 2009 Jun; 57(12):5486-93. PubMed ID: 19456131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the negative charge on RNHSO3-M+ an essential requirement for sulfamate sweetness?
    Spillane WJ; Hanniffy GG
    J Agric Food Chem; 2003 May; 51(10):3056-9. PubMed ID: 12720391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of sweetness by multilinear regression analysis and support vector machine.
    Zhong M; Chong Y; Nie X; Yan A; Yuan Q
    J Food Sci; 2013 Sep; 78(9):S1445-50. PubMed ID: 23915005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-taste study of arylsulfonyl(cyclo)alkanecarboxylic acids.
    Lysiak V; Ratajczak A; Mencel A; Jarzembek K; Polanski J
    Bioorg Med Chem; 2005 Feb; 13(3):671-5. PubMed ID: 15653334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity studies on sulfamate sweeteners II: semiquantitative structure-taste relationship for sulfamate (RNHSO-3) sweeteners-the role of R.
    Spillane WJ; McGlinchey G
    J Pharm Sci; 1981 Aug; 70(8):933-5. PubMed ID: 7310667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual differences in perceived bitterness predict liking of sweeteners.
    Kamerud JK; Delwiche JF
    Chem Senses; 2007 Nov; 32(9):803-10. PubMed ID: 17646203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor.
    Morini G; Bassoli A; Temussi PA
    J Med Chem; 2005 Aug; 48(17):5520-9. PubMed ID: 16107151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein.
    Assadi-Porter FM; Aceti DJ; Markley JL
    Arch Biochem Biophys; 2000 Apr; 376(2):259-65. PubMed ID: 10775411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sweet taste receptor: a single receptor with multiple sites and modes of interaction.
    Temussi P
    Adv Food Nutr Res; 2007; 53():199-239. PubMed ID: 17900500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-reactivity relationships in the sweetening cyclamate series: different N-cyclohexyl sulfamic acid derivatives (esters and amides) as a probe for the conformational requirements of the target sweet-taste receptor.
    Pautet F; Kamoun N; Daudon M
    Pharm Acta Helv; 1982; 57(7):205-8. PubMed ID: 7122650
    [No Abstract]   [Full Text] [Related]  

  • 13. Conformation analysis of aspartame-based sweeteners by NMR spectroscopy, molecular dynamics simulations, and X-ray diffraction studies.
    De Capua A; Goodman M; Amino Y; Saviano M; Benedetti E
    Chembiochem; 2006 Feb; 7(2):377-87. PubMed ID: 16372303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila melanogaster prefers compounds perceived sweet by humans.
    Gordesky-Gold B; Rivers N; Ahmed OM; Breslin PA
    Chem Senses; 2008 Mar; 33(3):301-9. PubMed ID: 18234713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting antitrichomonal activity: a computational screening using atom-based bilinear indices and experimental proofs.
    Marrero-Ponce Y; Meneses-Marcel A; Castillo-Garit JA; Machado-Tugores Y; Escario JA; Barrio AG; Pereira DM; Nogal-Ruiz JJ; Arán VJ; Martínez-Fernández AR; Torrens F; Rotondo R; Ibarra-Velarde F; Alvarado YJ
    Bioorg Med Chem; 2006 Oct; 14(19):6502-24. PubMed ID: 16875830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of artificial sweeteners--cyclamic acid and sodium cyclamate with other cyclamates.
    Leban I; Rudan-Tasic D; Lah N; Klofutar C
    Acta Crystallogr B; 2007 Jun; 63(Pt 3):418-25. PubMed ID: 17507755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and structure determination of a novel Maillard-derived sweetness enhancer by application of the comparative taste dilution analysis (cTDA).
    Ottinger H; Soldo T; Hofmann T
    J Agric Food Chem; 2003 Feb; 51(4):1035-41. PubMed ID: 12568569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of neoculin: insights into its sweetness and taste-modifying activity.
    Shimizu-Ibuka A; Morita Y; Terada T; Asakura T; Nakajima K; Iwata S; Misaka T; Sorimachi H; Arai S; Abe K
    J Mol Biol; 2006 May; 359(1):148-58. PubMed ID: 16616933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-caloric sweeteners, sweetness modulators, and sweetener enhancers.
    DuBois GE; Prakash I
    Annu Rev Food Sci Technol; 2012; 3():353-80. PubMed ID: 22224551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity studies on sulfamate sweetners III: structure-taste relationships for heterosulfamates.
    Spillane WJ; McGlinchey G; Muircheartaigh IO; Benson GA
    J Pharm Sci; 1983 Aug; 72(8):852-6. PubMed ID: 6620135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.