BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 16105220)

  • 1. Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.
    Senn W; Fusi S
    Neural Comput; 2005 Oct; 17(10):2106-38. PubMed ID: 16105220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
    Brader JM; Senn W; Fusi S
    Neural Comput; 2007 Nov; 19(11):2881-912. PubMed ID: 17883345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning of oscillatory correlated patterns in a cortical network by a STDP-based learning rule.
    Marinaro M; Scarpetta S; Yoshioka M
    Math Biosci; 2007 Jun; 207(2):322-35. PubMed ID: 17306840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to discriminate through long-term changes of dynamical synaptic transmission.
    Leibold C; Bendels MH
    Neural Comput; 2009 Dec; 21(12):3408-28. PubMed ID: 19764877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates.
    Fusi S
    Biol Cybern; 2002 Dec; 87(5-6):459-70. PubMed ID: 12461635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell.
    Brunel N; Hakim V; Isope P; Nadal JP; Barbour B
    Neuron; 2004 Sep; 43(5):745-57. PubMed ID: 15339654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons.
    Siri B; Quoy M; Delord B; Cessac B; Berry H
    J Physiol Paris; 2007; 101(1-3):136-48. PubMed ID: 18042357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal bases of perceptual learning revealed by a synaptic balance scheme.
    Hoshino O
    Neural Comput; 2004 Mar; 16(3):563-94. PubMed ID: 15006092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatiotemporal learning rule and its efficiency in separating spatiotemporal patterns.
    Tsukada M; Pan X
    Biol Cybern; 2005 Feb; 92(2):139-46. PubMed ID: 15696314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.
    Siri B; Berry H; Cessac B; Delord B; Quoy M
    Neural Comput; 2008 Dec; 20(12):2937-66. PubMed ID: 18624656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eluding oblivion with smart stochastic selection of synaptic updates.
    Fusi S; Senn W
    Chaos; 2006 Jun; 16(2):026112. PubMed ID: 16822044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A working memory model based on fast Hebbian learning.
    Sandberg A; Tegnér J; Lansner A
    Network; 2003 Nov; 14(4):789-802. PubMed ID: 14653503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A learning rule for the emergence of stable dynamics and timing in recurrent networks.
    Buonomano DV
    J Neurophysiol; 2005 Oct; 94(4):2275-83. PubMed ID: 16160088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural associative memory with optimal Bayesian learning.
    Knoblauch A
    Neural Comput; 2011 Jun; 23(6):1393-451. PubMed ID: 21395440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution.
    Toyoizumi T; Pfister JP; Aihara K; Gerstner W
    Neural Comput; 2007 Mar; 19(3):639-71. PubMed ID: 17298228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity.
    Fiete IR; Senn W; Wang CZ; Hahnloser RH
    Neuron; 2010 Feb; 65(4):563-76. PubMed ID: 20188660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.