These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 16105775)
1. Receptivity of boundary layers to distributed wall vibrations. Kerimbekov RM; Ruban AI Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1145-55. PubMed ID: 16105775 [TBL] [Abstract][Full Text] [Related]
2. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer. Wedin H; Cherubini S; Bottaro A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013022. PubMed ID: 26274284 [TBL] [Abstract][Full Text] [Related]
3. On the role of acoustic feedback in boundary-layer instability. Wu X Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936012 [TBL] [Abstract][Full Text] [Related]
4. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Sengupta TK; Bhaumik S; Bhumkar YG Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318 [TBL] [Abstract][Full Text] [Related]
5. Transitional wall pressure fluctuations on axisymmetric bodies. Hong C; Shin KK; Jeon JJ; Kim SY J Acoust Soc Am; 2008 Nov; 124(5):2767-73. PubMed ID: 19045764 [TBL] [Abstract][Full Text] [Related]
6. Motion of a Colloidal Sphere Covered by a Layer of Adsorbed Polymers Normal to a Plane Surface. Kuo J; Keh HJ J Colloid Interface Sci; 1999 Feb; 210(2):296-308. PubMed ID: 9929417 [TBL] [Abstract][Full Text] [Related]
7. Effect of free-stream turbulence on boundary layer transition. Goldstein ME Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936008 [TBL] [Abstract][Full Text] [Related]
8. Subharmonic instabilities of Tollmien-Schlichting waves in two-dimensional Poiseuille flow. Drissi A; Net M; Mercader I Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1781-91. PubMed ID: 11969963 [TBL] [Abstract][Full Text] [Related]
9. On active control of laminar-turbulent transition on two-dimensional wings. Erdmann R; Pätzold A; Engert M; Peltzer I; Nitsche W Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1382-95. PubMed ID: 21382820 [TBL] [Abstract][Full Text] [Related]
10. Triple-deck analysis of transonic high Reynolds number flow through slender channels. Kluwick A; Kornfeld M Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936010 [TBL] [Abstract][Full Text] [Related]
11. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates. Wang J; Yang L; Pan Q; Chao MC; Du J IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066 [TBL] [Abstract][Full Text] [Related]
12. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers. Baars WJ; Hutchins N; Marusic I Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167573 [TBL] [Abstract][Full Text] [Related]
13. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence. Duvvuri S; McKeon B Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167576 [TBL] [Abstract][Full Text] [Related]
14. Structure and particle transport in second-order stokes flow. Keanini RG Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6606-20. PubMed ID: 11088341 [TBL] [Abstract][Full Text] [Related]
15. On the stability of lumps and wave collapse in water waves. Akylas TR; Cho Y Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2761-74. PubMed ID: 18487123 [TBL] [Abstract][Full Text] [Related]
16. Long-wave theory for a new convective instability with exponential growth normal to the wall. Healey JJ Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1119-30. PubMed ID: 16105773 [TBL] [Abstract][Full Text] [Related]
17. Models for the formation of a critical layer in water wave propagation. Johnson RS Philos Trans A Math Phys Eng Sci; 2012 Apr; 370(1964):1638-60. PubMed ID: 22393114 [TBL] [Abstract][Full Text] [Related]
18. A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control. Carpenter PW; Kudar KL; Ali R; Sen PK; Davies C Philos Trans A Math Phys Eng Sci; 2007 Oct; 365(1859):2419-41. PubMed ID: 17519201 [TBL] [Abstract][Full Text] [Related]
19. Effect of finite amplitude of bottom corrugations on Fabry-Perot resonance of water waves. Zhang J; Benoit M Phys Rev E; 2019 May; 99(5-1):053109. PubMed ID: 31212525 [TBL] [Abstract][Full Text] [Related]
20. On stochastic stabilization of the Kelvin-Helmholtz instability by three-wave resonant interaction. Kostrykin SV; Romanova NN; Yakushkin IG Chaos; 2011 Dec; 21(4):043117. PubMed ID: 22225354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]