These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 16105814)
1. Daily transpiration rates of woody species on drying soil. Sinclair TR; Holbrook NM; Zwieniecki MA Tree Physiol; 2005 Nov; 25(11):1469-72. PubMed ID: 16105814 [TBL] [Abstract][Full Text] [Related]
2. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content. Nagakura J; Shigenaga H; Akama A; Takahashi M Tree Physiol; 2004 Nov; 24(11):1203-8. PubMed ID: 15339729 [TBL] [Abstract][Full Text] [Related]
3. [Time lag of stem sap flow and its relationships with transpiration characteristics in Quercus liaotungensis and Robina pseudoacacia in the loess hilly region, China]. Yang J; Lyu JL; He QY; Yan MJ; Li GQ; DU S Ying Yong Sheng Tai Xue Bao; 2019 Aug; 30(8):2607-2613. PubMed ID: 31418184 [TBL] [Abstract][Full Text] [Related]
4. [Transpiration water consumption of young Platycladus orientalis and Robinia pseudoacacia trees and their correction functions under different water supply]. Wang J; Huang B; Wang M; Wang D Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):419-25. PubMed ID: 15943349 [TBL] [Abstract][Full Text] [Related]
5. Nighttime transpiration in woody plants from contrasting ecosystems. Dawson TE; Burgess SS; Tu KP; Oliveira RS; Santiago LS; Fisher JB; Simonin KA; Ambrose AR Tree Physiol; 2007 Apr; 27(4):561-75. PubMed ID: 17241998 [TBL] [Abstract][Full Text] [Related]
6. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Brinkmann N; Eugster W; Zweifel R; Buchmann N; Kahmen A Tree Physiol; 2016 Dec; 36(12):1508-1519. PubMed ID: 27609804 [TBL] [Abstract][Full Text] [Related]
7. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Hinojosa JA; Hoffmann WA; Franco AC Tree Physiol; 2004 Oct; 24(10):1119-27. PubMed ID: 15294758 [TBL] [Abstract][Full Text] [Related]
8. Transpiration Rate of White Clover ( Egan L; Hofmann R; Nichols S; Hadipurnomo J; Hoyos-Villegas V Front Plant Sci; 2021; 12():595030. PubMed ID: 33815432 [TBL] [Abstract][Full Text] [Related]
9. Environmental controls on sap flow in a northern hardwood forest. Bovard BD; Curtis PS; Vogel CS; Su HB; Schmid HP Tree Physiol; 2005 Jan; 25(1):31-8. PubMed ID: 15519983 [TBL] [Abstract][Full Text] [Related]
10. Ecophysiology of Acer rubrum seedlings from contrasting hydrologic habitats: growth, gas exchange, tissue water relations, abscisic acid and carbon isotope discrimination. Bauerle WL; Whitlow TH; Setter TL; Bauerle TL; Vermeylen FM Tree Physiol; 2003 Aug; 23(12):841-50. PubMed ID: 12865250 [TBL] [Abstract][Full Text] [Related]
11. Responses of transpiration and photosynthesis to reversible changes in photosynthetic foliage area in western red cedar (Thuja plicata) seedlings. Pepin S; Livingston NJ; Whitehead D Tree Physiol; 2002 Apr; 22(6):363-71. PubMed ID: 11960761 [TBL] [Abstract][Full Text] [Related]
12. Stomatal conductance of Acer rubrum ecotypes under varying soil and atmospheric water conditions: predicting stomatal responses with an abscisic acid-based model. Bauerle WL; Toler JE; Wang GG Tree Physiol; 2004 Jul; 24(7):805-11. PubMed ID: 15123452 [TBL] [Abstract][Full Text] [Related]
13. Link between diurnal stem radius changes and tree water relations. Zweifel R; Item H; Häsler R Tree Physiol; 2001 Aug; 21(12-13):869-77. PubMed ID: 11498334 [TBL] [Abstract][Full Text] [Related]
14. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Köcher P; Horna V; Leuschner C Tree Physiol; 2013 Aug; 33(8):817-32. PubMed ID: 23999137 [TBL] [Abstract][Full Text] [Related]
15. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho. Kavanagh KL; Pangle R; Schotzko AD Tree Physiol; 2007 Apr; 27(4):621-9. PubMed ID: 17242003 [TBL] [Abstract][Full Text] [Related]
16. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Duursma RA; Kolari P; Perämäki M; Nikinmaa E; Hari P; Delzon S; Loustau D; Ilvesniemi H; Pumpanen J; Mäkelä A Tree Physiol; 2008 Feb; 28(2):265-76. PubMed ID: 18055437 [TBL] [Abstract][Full Text] [Related]
17. Leaf emergence (phyllochron index) and leaf expansion response to soil drying in cowpea genotypes. Manandhar A; Sinclair TR; Rufty TW; Ghanem ME Physiol Plant; 2017 Jun; 160(2):201-208. PubMed ID: 28075015 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Meinzer FC; James SA; Goldstein G Tree Physiol; 2004 Aug; 24(8):901-9. PubMed ID: 15172840 [TBL] [Abstract][Full Text] [Related]
19. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Daley MJ; Phillips NG Tree Physiol; 2006 Apr; 26(4):411-9. PubMed ID: 16414920 [TBL] [Abstract][Full Text] [Related]
20. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit. Engel VC; Griffin KL; Murthy R; Patterson L; Klimas C; Potosnak M Tree Physiol; 2004 Oct; 24(10):1137-45. PubMed ID: 15294760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]