BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16105824)

  • 1. Lactate accumulation, proton buffering, and pH change in ischemically exercising muscle.
    Kemp G
    Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R895-901; author reply R904-910. PubMed ID: 16105824
    [No Abstract]   [Full Text] [Related]  

  • 2. Explaining pH change in exercising muscle: lactic acid, proton consumption, and buffering vs. strong ion difference.
    Kemp G; Böning D; Beneke R; Maassen N
    Am J Physiol Regul Integr Comp Physiol; 2006 Jul; 291(1):R235-7; author reply R238-9. PubMed ID: 16760335
    [No Abstract]   [Full Text] [Related]  

  • 3. Lactic acidosis in vivo: testing the link between lactate generation and H+ accumulation in ischemic mouse muscle.
    Marcinek DJ; Kushmerick MJ; Conley KE
    J Appl Physiol (1985); 2010 Jun; 108(6):1479-86. PubMed ID: 20133437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What does glycolysis make and why is it important?
    Brooks GA
    J Appl Physiol (1985); 2010 Jun; 108(6):1450-1. PubMed ID: 20339007
    [No Abstract]   [Full Text] [Related]  

  • 5. Biochemistry of exercise-induced metabolic acidosis.
    Robergs RA; Ghiasvand F; Parker D
    Am J Physiol Regul Integr Comp Physiol; 2004 Sep; 287(3):R502-16. PubMed ID: 15308499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological constraints on changes in pH and phosphorus metabolite concentrations in ischemically exercising muscle: implications for metabolic control and for the interpretation of 31P-magnetic resonance spectroscopic studies.
    Kemp GJ
    MAGMA; 1997 Sep; 5(3):231-41. PubMed ID: 9351027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the "lactate paradox".
    Cerretelli P; Samaja M
    Eur J Appl Physiol; 2003 Nov; 90(5-6):431-48. PubMed ID: 14504942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Confusion concerning the lactate proton ratio: a problem of definition?
    Bishop DJ
    J Appl Physiol (1985); 2011 May; 110(5):1494-5. PubMed ID: 21717607
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle.
    Pilegaard H; Domino K; Noland T; Juel C; Hellsten Y; Halestrap AP; Bangsbo J
    Am J Physiol; 1999 Feb; 276(2):E255-61. PubMed ID: 9950784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans.
    Messonnier L; Kristensen M; Juel C; Denis C
    J Appl Physiol (1985); 2007 May; 102(5):1936-44. PubMed ID: 17289910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate concentrations in incisions indicate ischemic-like conditions may contribute to postoperative pain.
    Kim TJ; Freml L; Park SS; Brennan TJ
    J Pain; 2007 Jan; 8(1):59-66. PubMed ID: 16949881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate efflux from exercising human skeletal muscle: role of intracellular PO2.
    Richardson RS; Noyszewski EA; Leigh JS; Wagner PD
    J Appl Physiol (1985); 1998 Aug; 85(2):627-34. PubMed ID: 9688741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of 1H and 31P MRS analyses of lactate in skeletal muscle.
    Hsu AC; Dawson MJ
    Magn Reson Med; 2000 Sep; 44(3):418-26. PubMed ID: 10975894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH control in rat skeletal muscle during exercise, recovery from exercise, and acute respiratory acidosis.
    Kemp GJ; Thompson CH; Sanderson AL; Radda GK
    Magn Reson Med; 1994 Feb; 31(2):103-9. PubMed ID: 8133746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Last word on point:counterpoint: lactic acid is/is not the only physicochemical contributor to the acidosis of exercise.
    Böning D; Maassen N
    J Appl Physiol (1985); 2008 Jul; 105(1):368. PubMed ID: 18641216
    [No Abstract]   [Full Text] [Related]  

  • 19. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Tabata I
    J Appl Physiol (1985); 2011 May; 110(5):1495-6. PubMed ID: 21717610
    [No Abstract]   [Full Text] [Related]  

  • 20. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Crampin EJ
    J Appl Physiol (1985); 2011 May; 110(5):1495. PubMed ID: 21717609
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.