These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16105824)

  • 21. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Lactate and acidosis yet again?
    Meyer RA; Wiseman RW
    J Appl Physiol (1985); 2011 May; 110(5):1495. PubMed ID: 21717608
    [No Abstract]   [Full Text] [Related]  

  • 22. Lactic acid: New roles in a new millennium.
    Gladden LB
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):395-7. PubMed ID: 11209043
    [No Abstract]   [Full Text] [Related]  

  • 23. Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons.
    Immke DC; McCleskey EW
    Nat Neurosci; 2001 Sep; 4(9):869-70. PubMed ID: 11528414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Point: Muscle lactate and H⁺ production do have a 1:1 association in skeletal muscle.
    Vinnakota KC; Kushmerick MJ
    J Appl Physiol (1985); 2011 May; 110(5):1487-9; discussion 1497. PubMed ID: 21212251
    [No Abstract]   [Full Text] [Related]  

  • 25. Counterpoint: Muscle lactate and H⁺ production do not have a 1:1 association in skeletal muscle.
    Robergs RA
    J Appl Physiol (1985); 2011 May; 110(5):1489-91; discussion 1498. PubMed ID: 21562149
    [No Abstract]   [Full Text] [Related]  

  • 26. Combined glycolytic production of lactate(-) and ATP(4-) derived protons (= dissociated lactic acid) is the only cause of metabolic acidosis of exercise--a note on the OH(-) absorbing function of lactate (1-) production.
    Moll W; Gros G
    J Appl Physiol (1985); 2008 Jul; 105(1):365. PubMed ID: 18680794
    [No Abstract]   [Full Text] [Related]  

  • 27. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal.
    Péronnet F; Aguilaniu B
    Respir Physiol Neurobiol; 2006 Jan; 150(1):4-18. PubMed ID: 15890562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Massage impairs postexercise muscle blood flow and "lactic acid" removal.
    Wiltshire EV; Poitras V; Pak M; Hong T; Rayner J; Tschakovsky ME
    Med Sci Sports Exerc; 2010 Jun; 42(6):1062-71. PubMed ID: 19997015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats.
    Gregory NS; Whitley PE; Sluka KA
    PLoS One; 2015; 10(9):e0138576. PubMed ID: 26378796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux.
    Li S; Kim E; Bonanno JA
    Am J Physiol Cell Physiol; 2016 Jul; 311(1):C116-26. PubMed ID: 27225657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. No evidence for the Counterpoint position.
    Boning D; Maassen N
    J Appl Physiol (1985); 2011 May; 110(5):1493-4. PubMed ID: 21717605
    [No Abstract]   [Full Text] [Related]  

  • 32. Determination of buffering capacity of rat myocardium during ischemia.
    Wolfe CL; Gilbert HF; Brindle KM; Radda GK
    Biochim Biophys Acta; 1988 Aug; 971(1):9-20. PubMed ID: 2841984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle.
    Gawlitta D; Oomens CW; Bader DL; Baaijens FP; Bouten CV
    J Appl Physiol (1985); 2007 Aug; 103(2):464-73. PubMed ID: 17446404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of mineralized tissue in the buffering of lactic acid during anoxia and exercise in the leopard frog Rana pipiens.
    Warren DE; Jackson DC
    J Exp Biol; 2005 Mar; 208(Pt 6):1117-24. PubMed ID: 15767312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Counterpoint: lactic acid accumulation is a disadvantage during muscle activity.
    Bangsbo J; Juel C
    J Appl Physiol (1985); 2006 Apr; 100(4):1412-3; discussion 1413-4. PubMed ID: 16646130
    [No Abstract]   [Full Text] [Related]  

  • 36. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Why add complexity/confusion to a simple issue?
    Sahlin K
    J Appl Physiol (1985); 2011 May; 110(5):1494. PubMed ID: 21717606
    [No Abstract]   [Full Text] [Related]  

  • 37. Comments on Point:Counterpoint: Muscle lactate and H⁺ production do/do not have a 1:1 association in skeletal muscle. Calculations of Robergs support the view of Vinnakota and Kushmerick.
    Lindinger MI; Heigenhauser GJ
    J Appl Physiol (1985); 2011 May; 110(5):1493. PubMed ID: 21717604
    [No Abstract]   [Full Text] [Related]  

  • 38. Invited review: Quantifying proton exchange from chemical reactions - Implications for the biochemistry of metabolic acidosis.
    Robergs RA
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():29-45. PubMed ID: 31071454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Point: lactic acid accumulation is an advantage during muscle activity.
    Lamb GD; Stephenson DG
    J Appl Physiol (1985); 2006 Apr; 100(4):1410-2; discussion 1414. PubMed ID: 16540714
    [No Abstract]   [Full Text] [Related]  

  • 40. Lactate and force production in skeletal muscle.
    Kristensen M; Albertsen J; Rentsch M; Juel C
    J Physiol; 2005 Jan; 562(Pt 2):521-6. PubMed ID: 15550457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.