These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 16107143)
1. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. Khandelwal A; Lukacova V; Comez D; Kroll DM; Raha S; Balaz S J Med Chem; 2005 Aug; 48(17):5437-47. PubMed ID: 16107143 [TBL] [Abstract][Full Text] [Related]
2. QM/MM linear response method distinguishes ligand affinities for closely related metalloproteins. Khandelwal A; Balaz S Proteins; 2007 Nov; 69(2):326-39. PubMed ID: 17607744 [TBL] [Abstract][Full Text] [Related]
3. Improved estimation of ligand-macromolecule binding affinities by linear response approach using a combination of multi-mode MD simulation and QM/MM methods. Khandelwal A; Balaz S J Comput Aided Mol Des; 2007; 21(1-3):131-7. PubMed ID: 17333483 [TBL] [Abstract][Full Text] [Related]
4. Molecular docking studies of a group of hydroxamate inhibitors with gelatinase-A by molecular dynamics. Hou T; Zhang W; Xu X J Comput Aided Mol Des; 2002 Jan; 16(1):27-41. PubMed ID: 12197664 [TBL] [Abstract][Full Text] [Related]
5. Extension of QM/MM docking and its applications to metalloproteins. Cho AE; Rinaldo D J Comput Chem; 2009 Dec; 30(16):2609-16. PubMed ID: 19373896 [TBL] [Abstract][Full Text] [Related]
6. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797 [TBL] [Abstract][Full Text] [Related]
7. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy. Bai F; Liao S; Gu J; Jiang H; Wang X; Li H J Chem Inf Model; 2015 Apr; 55(4):833-47. PubMed ID: 25746437 [TBL] [Abstract][Full Text] [Related]
8. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction. Hu X; Shelver WH J Mol Graph Model; 2003 Nov; 22(2):115-26. PubMed ID: 12932782 [TBL] [Abstract][Full Text] [Related]
9. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites. Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191 [TBL] [Abstract][Full Text] [Related]
10. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown. Gresh N; Perahia D; de Courcy B; Foret J; Roux C; El-Khoury L; Piquemal JP; Salmon L J Comput Chem; 2016 Dec; 37(32):2770-2782. PubMed ID: 27699809 [TBL] [Abstract][Full Text] [Related]
11. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics. Nowosielski M; Hoffmann M; Kuron A; Korycka-Machala M; Dziadek J J Comput Chem; 2013 Apr; 34(9):750-6. PubMed ID: 23233437 [TBL] [Abstract][Full Text] [Related]
12. Quantum mechanics/molecular mechanics strategies for docking pose refinement: distinguishing between binders and decoys in cytochrome C peroxidase. Burger SK; Thompson DC; Ayers PW J Chem Inf Model; 2011 Jan; 51(1):93-101. PubMed ID: 21133348 [TBL] [Abstract][Full Text] [Related]
13. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface. Hu H; Lu Z; Parks JM; Burger SK; Yang W J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486 [TBL] [Abstract][Full Text] [Related]
14. Estimates of ligand-binding affinities supported by quantum mechanical methods. Söderhjelm P; Kongsted J; Genheden S; Ryde U Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794 [TBL] [Abstract][Full Text] [Related]
15. Using DFT methodology for more reliable predictive models: Design of inhibitors of Golgi α-Mannosidase II. Bobovská A; Tvaroška I; Kóňa J J Mol Graph Model; 2016 May; 66():47-57. PubMed ID: 27035259 [TBL] [Abstract][Full Text] [Related]
16. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. Jain T; Jayaram B Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation. Chen J; Wang J; Zhang Q; Chen K; Zhu W J Biomol Struct Dyn; 2015; 33(12):2606-18. PubMed ID: 25562613 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. Pradiba D; Aarthy M; Shunmugapriya V; Singh SK; Vasanthi M J Biomol Struct Dyn; 2018 Nov; 36(14):3718-3739. PubMed ID: 29068268 [TBL] [Abstract][Full Text] [Related]
19. A Fragment Quantum Mechanical Method for Metalloproteins. Xu M; He X; Zhu T; Zhang JZH J Chem Theory Comput; 2019 Feb; 15(2):1430-1439. PubMed ID: 30620584 [TBL] [Abstract][Full Text] [Related]
20. Structure and dynamics of a dizinc metalloprotein: effect of charge transfer and polarization. Li YL; Mei Y; Zhang DW; Xie DQ; Zhang JZ J Phys Chem B; 2011 Aug; 115(33):10154-62. PubMed ID: 21766867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]