BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16107216)

  • 21. Verapamil-induced creatine kinase loss from rat slow and fast muscles.
    Glenn GM; Hayes DA; Armstrong RB
    Res Commun Chem Pathol Pharmacol; 1990 Sep; 69(3):353-6. PubMed ID: 2236901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dantrolene sodium reduces the enhanced leakage of creatine kinase caused by ethanol, cocaine, and electrical stimulation in isolated fast and slow muscles of rat.
    Pagala M; Amaladevi B; Bernstein A; Herzlich B; Namba T; Grob D
    Alcohol Clin Exp Res; 1997 Feb; 21(1):63-7. PubMed ID: 9046374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alterations in the expression and activity of creatine kinase-M and mitochondrial creatine kinase subunits in skeletal muscle following prolonged intense exercise in rats.
    Chen Y; Serfass RC; Apple FS
    Eur J Appl Physiol; 2000 Jan; 81(1-2):114-9. PubMed ID: 10552275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired intracellular energetic communication in muscles from creatine kinase and adenylate kinase (M-CK/AK1) double knock-out mice.
    Janssen E; Terzic A; Wieringa B; Dzeja PP
    J Biol Chem; 2003 Aug; 278(33):30441-9. PubMed ID: 12730234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective reduction of creatine kinase subunit mRNAs in striated muscle of diabetic rats.
    Su CY; Payne M; Strauss AW; Dillmann WH
    Am J Physiol; 1992 Aug; 263(2 Pt 1):E310-6. PubMed ID: 1514612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure.
    Bigard AX; Boehm E; Veksler V; Mateo P; Anflous K; Ventura-Clapier R
    J Mol Cell Cardiol; 1998 Nov; 30(11):2391-401. PubMed ID: 9925374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of creatine kinase reduces the rate of fatigue-induced decrease in tetanic [Ca(2+)](i) in mouse skeletal muscle.
    Dahlstedt AJ; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 3):639-49. PubMed ID: 11410623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Changes in concentrations of nerve- and muscle-related proteins during reinnervation of slow and fast muscles].
    Matsushita H
    Aichi Gakuin Daigaku Shigakkai Shi; 1989 Jun; 27(2):397-413. PubMed ID: 2637628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free-energy carriers in human cultured muscle cells.
    Bolhuis PA; de Zwart HJ; Ponne NJ; de Jong JM
    Muscle Nerve; 1985 Jan; 8(1):22-6. PubMed ID: 4058454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activities of creatine kinase isoenzymes in single skeletal muscle fibres of trained and untrained rats.
    Yamashita K; Yoshioka T
    Pflugers Arch; 1992 Jun; 421(2-3):270-3. PubMed ID: 1528720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absence of myofibrillar creatine kinase and diaphragm isometric function during repetitive activation.
    LaBella JJ; Daood MJ; Koretsky AP; Roman BB; Sieck GC; Wieringa B; Watchko JF
    J Appl Physiol (1985); 1998 Apr; 84(4):1166-73. PubMed ID: 9516180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. D-2-hydroxyglutaric acid inhibits creatine kinase activity from cardiac and skeletal muscle of young rats.
    da Silva CG; Bueno AR; Schuck PF; Leipnitz G; Ribeiro CA; Wannmacher CM; Wyse AT; Wajner M
    Eur J Clin Invest; 2003 Oct; 33(10):840-7. PubMed ID: 14511354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compartmentation of creatine kinase isoenzymes in myometrium of gravid guinea-pig.
    Clark JF; Khuchua Z; Kuznetsov A; Saks VA; Ventura-Clapier R
    J Physiol; 1993 Jul; 466():553-72. PubMed ID: 8410707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The creatine kinase system and pleiotropic effects of creatine.
    Wallimann T; Tokarska-Schlattner M; Schlattner U
    Amino Acids; 2011 May; 40(5):1271-96. PubMed ID: 21448658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence.
    Echegaray M; Rivera MA
    Sports Med; 2001; 31(13):919-34. PubMed ID: 11708401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hearts of some Antarctic fishes lack mitochondrial creatine kinase.
    O'Brien KM; Mueller IA; Orczewska JI; Dullen KR; Ortego M
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():30-6. PubMed ID: 25151023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gated dynamic 31P MRS shows reduced contractile phosphocreatine breakdown in mice deficient in cytosolic creatine kinase and adenylate kinase.
    Kan HE; Veltien A; Arnts H; Nabuurs CI; Luijten B; de Haan A; Wieringa B; Heerschap A
    NMR Biomed; 2009 Jun; 22(5):523-31. PubMed ID: 19156695
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nebulin isoforms of extraocular muscle.
    Moncman CL; Andrade FH
    Cell Tissue Res; 2007 Feb; 327(2):415-20. PubMed ID: 17053899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rat and mouse cardiomyocytes show subtle differences in creatine kinase expression and compartmentalization.
    Branovets J; Soodla K; Vendelin M; Birkedal R
    PLoS One; 2023; 18(11):e0294718. PubMed ID: 38011179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increase of the cytotoxic effect of Bothrops jararacussu venom on mouse extensor digitorum longus and soleus by potassium channel blockers and by Na(+)/K(+)-ATPase inhibition.
    Tomaz MA; Fernandes FF; El-Kik CZ; Moraes RA; Calil-Elias S; Saturnino-Oliveira J; Martinez AM; Ownby CL; Melo PA
    Toxicon; 2008 Sep; 52(4):551-8. PubMed ID: 18675839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.