These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1610745)

  • 1. In vivo strain analysis of the greyhound femoral diaphysis.
    Szivek JA; Johnson EM; Magee FP
    J Invest Surg; 1992; 5(2):91-108. PubMed ID: 1610745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone remodeling and in vivo strain analysis of intact and implanted greyhound proximal femora.
    Szivek JA; Johnson EM; Magee FP; Emmanual J; Poser R; Koeneman JB
    J Invest Surg; 1994; 7(3):213-33. PubMed ID: 7918244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo strain measurements collected using calcium phosphate ceramic-bonded strain gauges.
    Szivek JA; Anderson PL; DeYoung DW
    J Invest Surg; 1997; 10(5):263-73. PubMed ID: 9361990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A long-term in vivo bone strain measurement device.
    Szivek JA; Magee FP
    J Invest Surg; 1989; 2(2):195-206. PubMed ID: 2487248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain redistribution in the canine femur resulting from hip implants of different stiffnesses.
    Szivek JA; Magee FP; Hanson T; Hedley AK
    J Invest Surg; 1994; 7(2):95-110. PubMed ID: 8049183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite-coated strain gauges for long-term in vivo bone strain measurements.
    Maliniak MM; Szivek JA; DeYoung DW; Emmanual J
    J Appl Biomater; 1993; 4(2):143-52. PubMed ID: 10171661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.
    Fresvig T; Ludvigsen P; Steen H; Reikerås O
    Med Eng Phys; 2008 Jan; 30(1):104-8. PubMed ID: 17369073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of loading parameters in the canine hip in vivo.
    Page AE; Allan C; Jasty M; Harrigan TP; Bragdon CR; Harris WH
    J Biomech; 1993; 26(4-5):571-9. PubMed ID: 8478358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary development of a hydroxyapatite-backed strain gauge.
    Szivek JA; Gealer RG; Magee FP; Emmanual J
    J Appl Biomater; 1990; 1(3):241-8. PubMed ID: 10171099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of implant overlap on the mechanical properties of the femur.
    Harris T; Ruth JT; Szivek J; Haywood B
    J Trauma; 2003 May; 54(5):930-5. PubMed ID: 12777906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of implant orientation, canal fill, and implant fit on femoral strain patterns and implant stability during catastrophic testing of a canine cementless femoral prosthesis.
    Pernell RT; Milton JL; Gross RS; Montgomery RD; Wenzel JG; Savory CG; Aberman HM
    Vet Surg; 1995; 24(4):337-46. PubMed ID: 7571386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress and strain distribution in the intact canine femur: finite element analysis.
    Shahar R; Banks-Sills L; Eliasy R
    Med Eng Phys; 2003 Jun; 25(5):387-95. PubMed ID: 12711236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent mechanical properties of rat femur. Measured in vivo and in vitro.
    Indrekvam K; Husby OS; Gjerdet NR; Engester LB; Langeland N
    Acta Orthop Scand; 1991 Jun; 62(3):248-52. PubMed ID: 2042467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral symmetry of biomechanical properties in rat femora.
    Battraw GA; Miera V; Anderson PL; Szivek JA
    J Biomed Mater Res; 1996 Oct; 32(2):285-8. PubMed ID: 8884507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The medial femoral wall can play a more important role in unstable intertrochanteric fractures compared with lateral femoral wall: a biomechanical study.
    Nie B; Chen X; Li J; Wu D; Liu Q
    J Orthop Surg Res; 2017 Dec; 12(1):197. PubMed ID: 29282138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical evaluation of the helica femoral implant system using traditional and modified techniques.
    Dosch M; Hayashi K; Garcia TC; Weeren R; Stover SM
    Vet Surg; 2013 Oct; 42(7):867-76. PubMed ID: 23980642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo calibration and validation of in vivo equine bone strain measures.
    Davies HM
    Equine Vet J; 2009 Mar; 41(3):225-8. PubMed ID: 19469225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of factors affecting bonding rate of calcium phosphate ceramic coatings for in vivo strain gauge attachment.
    Szivek JA; Anderson PL; Dishongh TJ; DeYoung DW
    J Biomed Mater Res; 1996; 33(3):121-32. PubMed ID: 8864883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-element-analysis and experimental investigation of stresses in a femur.
    Rohlmann A; Mössner U; Bergmann G; Kölbel R
    J Biomed Eng; 1982 Jul; 4(3):241-6. PubMed ID: 7120980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.