BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 16107526)

  • 1. SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb.
    Maher BJ; Westbrook GL
    J Neurophysiol; 2005 Dec; 94(6):3743-50. PubMed ID: 16107526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional role of NMDA autoreceptors in olfactory mitral cells.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2000 Jul; 84(1):39-50. PubMed ID: 10899181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    J Neurophysiol; 1999 Jul; 82(1):489-94. PubMed ID: 10400976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents.
    Christie JM; Westbrook GL
    J Neurophysiol; 2003 May; 89(5):2466-72. PubMed ID: 12740404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells.
    Pinato G; Midtgaard J
    J Neurophysiol; 2005 Mar; 93(3):1285-94. PubMed ID: 15483062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
    Murphy GJ; Darcy DP; Isaacson JS
    Nat Neurosci; 2005 Mar; 8(3):354-64. PubMed ID: 15696160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb.
    Isaacson JS; Vitten H
    J Neurosci; 2003 Mar; 23(6):2032-9. PubMed ID: 12657661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors.
    Schoppa NE; Kinzie JM; Sahara Y; Segerson TP; Westbrook GL
    J Neurosci; 1998 Sep; 18(17):6790-802. PubMed ID: 9712650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of backpropagating action potentials in mitral cell secondary dendrites.
    Lowe G
    J Neurophysiol; 2002 Jul; 88(1):64-85. PubMed ID: 12091533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells.
    Halabisky B; Friedman D; Radojicic M; Strowbridge BW
    J Neurosci; 2000 Jul; 20(13):5124-34. PubMed ID: 10864969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition.
    Heinbockel T; Laaris N; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):858-70. PubMed ID: 17093122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb.
    Isaacson JS
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):337-42. PubMed ID: 11120892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olfactory reciprocal synapses: dendritic signaling in the CNS.
    Isaacson JS; Strowbridge BW
    Neuron; 1998 Apr; 20(4):749-61. PubMed ID: 9581766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb.
    Jahr CE; Nicoll RA
    J Physiol; 1982 May; 326():213-34. PubMed ID: 7108788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paradoxical Excitatory Impact of SK Channels on Dendritic Excitability.
    Bock T; Honnuraiah S; Stuart GJ
    J Neurosci; 2019 Oct; 39(40):7826-7839. PubMed ID: 31420457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb.
    Hall BJ; Delaney KR
    J Physiol; 2002 Sep; 543(Pt 3):819-34. PubMed ID: 12231641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.
    Zagha E; Manita S; Ross WN; Rudy B
    J Neurophysiol; 2010 Jun; 103(6):3516-25. PubMed ID: 20357073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action potential propagation into the presynaptic dendrites of rat mitral cells.
    Bischofberger J; Jonas P
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):359-65. PubMed ID: 9365910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.