These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16107586)

  • 1. Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex.
    Song WJ; Kawaguchi H; Totoki S; Inoue Y; Katura T; Maeda S; Inagaki S; Shirasawa H; Nishimura M
    Cereb Cortex; 2006 May; 16(5):718-29. PubMed ID: 16107586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous activity resembling tone-evoked activity in the primary auditory cortex of guinea pigs.
    Saitoh K; Inagaki S; Nishimura M; Kawaguchi H; Song WJ
    Neurosci Res; 2010 Oct; 68(2):107-13. PubMed ID: 20600374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal observation of guinea pig auditory cortex with optical recording.
    Fukunishi K; Murai N; Uno H
    Jpn J Physiol; 1993; 43 Suppl 1():S61-6. PubMed ID: 8271517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isofrequency band-like zones of activation revealed by optical imaging of intrinsic signals in the cat primary auditory cortex.
    Ojima H; Takayanagi M; Potapov D; Homma R
    Cereb Cortex; 2005 Oct; 15(10):1497-509. PubMed ID: 15659656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic spatiotemporal inhibition in the guinea pig auditory cortex.
    Kubota M; Sugimoto S; Horikawa J
    Neuroreport; 2008 Nov; 19(17):1691-4. PubMed ID: 18849882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal symmetry in primary auditory cortex: implications for cortical connectivity.
    Simon JZ; Depireux DA; Klein DJ; Fritz JB; Shamma SA
    Neural Comput; 2007 Mar; 19(3):583-638. PubMed ID: 17298227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal dynamics determine the cortical response to thalamic stimulation.
    MacLean JN; Watson BO; Aaron GB; Yuste R
    Neuron; 2005 Dec; 48(5):811-23. PubMed ID: 16337918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticofugal feedback for auditory midbrain plasticity elicited by tones and electrical stimulation of basal forebrain in mice.
    Zhang Y; Hakes JJ; Bonfield SP; Yan J
    Eur J Neurosci; 2005 Aug; 22(4):871-9. PubMed ID: 16115210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A train of electrical pulses applied to the primary auditory cortex evokes a conditioned response in guinea pigs.
    Okuda Y; Shikata H; Song WJ
    Neurosci Res; 2011 Sep; 71(1):103-6. PubMed ID: 21679731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparametric changes in the receptive field of cortical auditory neurons induced by thalamic activation in the mouse.
    Jafari MR; Zhang Y; Yan J
    Cereb Cortex; 2007 Jan; 17(1):71-80. PubMed ID: 16467568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic spatial coherence of ongoing and spontaneous activities in auditory cortex.
    Yoshida T; Sakagami M; Katura T; Yamazaki K; Tanaka S; Iwamoto M; Tanaka N
    Neurosci Res; 2008 May; 61(1):49-55. PubMed ID: 18314210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of infraslow potentials in the primary auditory cortex: component analysis and contribution of specific thalamic-cortical and non-specific brainstem-cortical influences.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2008 Jul; 1219():66-77. PubMed ID: 18534565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory thalamus responses to guinea-pig vocalizations: a comparison between rat and guinea-pig.
    Philibert B; Laudanski J; Edeline JM
    Hear Res; 2005 Nov; 209(1-2):97-103. PubMed ID: 16139975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice.
    Takahashi K; Hishida R; Kubota Y; Kudoh M; Takahashi S; Shibuki K
    Eur J Neurosci; 2006 Mar; 23(5):1365-76. PubMed ID: 16553797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex.
    Soto G; Kopell N; Sen K
    J Neurophysiol; 2006 Dec; 96(6):2972-83. PubMed ID: 16899641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfield differences in intensity and frequency representation of evoked potentials in rat auditory cortex.
    Takahashi H; Nakao M; Kaga K
    Hear Res; 2005 Dec; 210(1-2):9-23. PubMed ID: 16213681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical frequency-specific plasticity is independently induced by intracortical circuitry.
    Kong L; Wang S; Liu X; Li L; Zeeman M; Yan J
    Neurosci Lett; 2018 Mar; 668():13-18. PubMed ID: 29274440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective activation of cat primary auditory cortex by way of direct intraneural auditory nerve stimulation.
    Kim SJ; Badi AN; Normann RA
    Laryngoscope; 2007 Jun; 117(6):1053-62. PubMed ID: 17545868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.