BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 16107689)

  • 1. Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism.
    Zhang Z; Reese JC
    Mol Cell Biol; 2005 Sep; 25(17):7399-411. PubMed ID: 16107689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
    Conlan RS; Tzamarias D
    J Mol Biol; 2001 Jun; 309(5):1007-15. PubMed ID: 11399075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae.
    Zhang Z; Reese JC
    J Biol Chem; 2004 Sep; 279(38):39240-50. PubMed ID: 15254041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation.
    Fleming AB; Pennings S
    EMBO J; 2001 Sep; 20(18):5219-31. PubMed ID: 11566885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tup1-Ssn6 and Swi-Snf remodelling activities influence long-range chromatin organization upstream of the yeast SUC2 gene.
    Fleming AB; Pennings S
    Nucleic Acids Res; 2007; 35(16):5520-31. PubMed ID: 17704134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence.
    Li B; Reese JC
    J Biol Chem; 2001 Sep; 276(36):33788-97. PubMed ID: 11448965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein.
    Mennella TA; Klinkenberg LG; Zitomer RS
    Eukaryot Cell; 2003 Dec; 2(6):1288-303. PubMed ID: 14665463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Set2 methyltransferase associates with Ssn6 yet Tup1-Ssn6 repression is independent of histone methylation.
    Tripic T; Edmondson DG; Davie JK; Strahl BD; Dent SY
    Biochem Biophys Res Commun; 2006 Jan; 339(3):905-14. PubMed ID: 16329992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo.
    Davie JK; Edmondson DG; Coco CB; Dent SY
    J Biol Chem; 2003 Dec; 278(50):50158-62. PubMed ID: 14525981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional repression by Tup1-Ssn6.
    Malavé TM; Dent SY
    Biochem Cell Biol; 2006 Aug; 84(4):437-43. PubMed ID: 16936817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of transcription factor Mot3 and chromatin in repression of the hypoxic gene ANB1 in yeast.
    Kastaniotis AJ; Mennella TA; Konrad C; Torres AM; Zitomer RS
    Mol Cell Biol; 2000 Oct; 20(19):7088-98. PubMed ID: 10982825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae.
    Green SR; Johnson AD
    Mol Biol Cell; 2004 Sep; 15(9):4191-202. PubMed ID: 15240822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone-dependent association of Tup1-Ssn6 with repressed genes in vivo.
    Davie JK; Trumbly RJ; Dent SY
    Mol Cell Biol; 2002 Feb; 22(3):693-703. PubMed ID: 11784848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae.
    Mizuno T; Nakazawa N; Remgsamrarn P; Kunoh T; Oshima Y; Harashima S
    Curr Genet; 1998 Apr; 33(4):239-47. PubMed ID: 9560430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ssn6-Tup1 interacts with class I histone deacetylases required for repression.
    Watson AD; Edmondson DG; Bone JR; Mukai Y; Yu Y; Du W; Stillman DJ; Roth SY
    Genes Dev; 2000 Nov; 14(21):2737-44. PubMed ID: 11069890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic characterization of rbt mutants that enhance basal transcription from core promoters in Saccharomyces cerevisiae.
    Kunoh T; Sakuno T; Furukawa T; Kaneko Y; Harashima S
    J Biochem; 2000 Oct; 128(4):575-84. PubMed ID: 11011139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress.
    Kobayashi Y; Inai T; Mizunuma M; Okada I; Shitamukai A; Hirata D; Miyakawa T
    Biochem Biophys Res Commun; 2008 Mar; 368(1):50-5. PubMed ID: 18201562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes.
    Sharma VM; Tomar RS; Dempsey AE; Reese JC
    Mol Cell Biol; 2007 Apr; 27(8):3199-210. PubMed ID: 17296735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derepression of DNA damage-regulated genes requires yeast TAF(II)s.
    Li B; Reese JC
    EMBO J; 2000 Aug; 19(15):4091-100. PubMed ID: 10921889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dimerization/repression domain of RFX1 is related to a conserved region of its yeast homologues Crt1 and Sak1: a new function for an ancient motif.
    Katan-Khaykovich Y; Spiegel I; Shaul Y
    J Mol Biol; 1999 Nov; 294(1):121-37. PubMed ID: 10556033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.