These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 1610786)

  • 1. Burst activity and synaptic mechanisms in a hypothalamic network grown in culture.
    Misgeld U; Swandulla D
    Physiol Res; 1992; 41(1):91-2. PubMed ID: 1610786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic modulation of oscillatory activity of hypothalamic neuronal networks in vitro.
    Misgeld U; Zeilhofer HU; Swandulla D
    Cell Mol Neurobiol; 1998 Feb; 18(1):29-43. PubMed ID: 9524728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic feedback excitation has hypothalamic neural networks generate quasirhythmic burst activity.
    Müller W; Swandulla D
    J Neurophysiol; 1995 Feb; 73(2):855-61. PubMed ID: 7760139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic integration of newly generated neurons in rat dissociated hippocampal cultures.
    Cheyne JE; Grant L; Butler-Munro C; Foote JW; Connor B; Montgomery JM
    Mol Cell Neurosci; 2011 Jul; 47(3):203-14. PubMed ID: 21569851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic bursting of cultured cortical neurons in low magnesium: cellular and network mechanisms.
    Robinson HP; Torimitsu K; Jimbo Y; Kuroda Y; Kawana A
    Jpn J Physiol; 1993; 43 Suppl 1():S125-30. PubMed ID: 8271484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous activity and recurrent inhibition in cultured hippocampal networks.
    Siebler M; Köller H; Stichel CC; Müller HW; Freund HJ
    Synapse; 1993 Jul; 14(3):206-13. PubMed ID: 8211707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia.
    Park JB; Skalska S; Stern JE
    Endocrinology; 2006 Aug; 147(8):3746-60. PubMed ID: 16675519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model.
    Braun HA; Schwabedal J; Dewald M; Finke C; Postnova S; Huber MT; Wollweber B; Schneider H; Hirsch MC; Voigt K; Feudel U; Moss F
    Chaos; 2011 Dec; 21(4):047509. PubMed ID: 22225383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early expression of AMPA receptors and lack of NMDA receptors in developing rat climbing fibre synapses.
    Lachamp P; Balland B; Tell F; Baude A; Strube C; Crest M; Kessler JP
    J Physiol; 2005 May; 564(Pt 3):751-63. PubMed ID: 15731186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balanced inhibition and excitation drive spike activity in spinal half-centers.
    Berg RW; Alaburda A; Hounsgaard J
    Science; 2007 Jan; 315(5810):390-3. PubMed ID: 17234950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic plasticity: taming the beast.
    Abbott LF; Nelson SB
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple model of cortical culture growth: burst property dependence on network composition and activity.
    Kawasaki F; Stiber M
    Biol Cybern; 2014 Aug; 108(4):423-43. PubMed ID: 24917461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longterm stability and developmental changes in spontaneous network burst firing patterns in dissociated rat cerebral cortex cell cultures on multielectrode arrays.
    Van Pelt J; Corner MA; Wolters PS; Rutten WL; Ramakers GJ
    Neurosci Lett; 2004 May; 361(1-3):86-9. PubMed ID: 15135900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition by alpha-tetrahydrodeoxycorticosterone (THDOC) of pre-sympathetic parvocellular neurones in the paraventricular nucleus of rat hypothalamus.
    Womack MD; Pyner S; Barrett-Jolley R
    Br J Pharmacol; 2006 Nov; 149(5):600-7. PubMed ID: 17001301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techniques for culture of hypothalamic neurons.
    Loudes C; Faivre-Bauman A; Tixier-Vidal A
    Methods Enzymol; 1983; 103():313-34. PubMed ID: 6669040
    [No Abstract]   [Full Text] [Related]  

  • 17. Retinohypothalamic tract synapses in the rat suprachiasmatic nucleus demonstrate short-term synaptic plasticity.
    Moldavan MG; Allen CN
    J Neurophysiol; 2010 May; 103(5):2390-9. PubMed ID: 20220078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The astrocyte as a gatekeeper of synaptic information transfer.
    Volman V; Ben-Jacob E; Levine H
    Neural Comput; 2007 Feb; 19(2):303-26. PubMed ID: 17206866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses.
    Bains JS; Longacher JM; Staley KJ
    Nat Neurosci; 1999 Aug; 2(8):720-6. PubMed ID: 10412061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of spontaneous electrical activity by rat hypothalamic neurons in dissociated culture.
    Ling DS; Petroski RE; Chou W; Geller HM
    Brain Res Dev Brain Res; 1990 May; 53(2):276-82. PubMed ID: 2357800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.