These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 1610792)
1. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 2. Site-directed mutagenesis of the xylose binding site. Lambeir AM; Lauwereys M; Stanssens P; Mrabet NT; Snauwaert J; van Tilbeurgh H; Matthyssens G; Lasters I; De Maeyer M; Wodak SJ Biochemistry; 1992 Jun; 31(24):5459-66. PubMed ID: 1610792 [TBL] [Abstract][Full Text] [Related]
2. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. van Tilbeurgh H; Jenkins J; Chiadmi M; Janin J; Wodak SJ; Mrabet NT; Lambeir AM Biochemistry; 1992 Jun; 31(24):5467-71. PubMed ID: 1610793 [TBL] [Abstract][Full Text] [Related]
3. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Jenkins J; Janin J; Rey F; Chiadmi M; van Tilbeurgh H; Lasters I; De Maeyer M; Van Belle D; Wodak SJ; Lauwereys M Biochemistry; 1992 Jun; 31(24):5449-58. PubMed ID: 1610791 [TBL] [Abstract][Full Text] [Related]
4. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. Lee CY; Bagdasarian M; Meng MH; Zeikus JG J Biol Chem; 1990 Nov; 265(31):19082-90. PubMed ID: 2229064 [TBL] [Abstract][Full Text] [Related]
5. The role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase. Meng M; Bagdasarian M; Zeikus JG Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8459-63. PubMed ID: 8378319 [TBL] [Abstract][Full Text] [Related]
6. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: replacement of a catalytic metal by an amino acid. Allen KN; Lavie A; Glasfeld A; Tanada TN; Gerrity DP; Carlson SC; Farber GK; Petsko GA; Ringe D Biochemistry; 1994 Feb; 33(6):1488-94. PubMed ID: 7906142 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent properties of the Escherichia coli D-xylose isomerase active site. Jamieson AC; Batt CA Protein Eng; 1992 Apr; 5(3):235-40. PubMed ID: 1409543 [TBL] [Abstract][Full Text] [Related]
8. Wild-type and mutant D-xylose isomerase from Actinoplanes missouriensis: metal-ion dissociation constants, kinetic parameters of deuterated and non-deuterated substrates and solvent-isotope effects. van Bastelaere PB; Kersters-Hilderson HL; Lambeir AM Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):135-42. PubMed ID: 7717967 [TBL] [Abstract][Full Text] [Related]
9. Probing the roles of active site residues in D-xylose isomerase. Whitaker RD; Cho Y; Cha J; Carrell HL; Glusker JP; Karplus PA; Batt CA J Biol Chem; 1995 Sep; 270(39):22895-906. PubMed ID: 7559425 [TBL] [Abstract][Full Text] [Related]
10. Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket. Meng M; Lee C; Bagdasarian M; Zeikus JG Proc Natl Acad Sci U S A; 1991 May; 88(9):4015-9. PubMed ID: 2023950 [TBL] [Abstract][Full Text] [Related]
11. Perturbing the metal site in D-xylose isomerase. Effect of mutations of His-220 on enzyme stability. Cha J; Cho Y; Whitaker RD; Carrell HL; Glusker JP; Karplus PA; Batt CA J Biol Chem; 1994 Jan; 269(4):2687-94. PubMed ID: 8300598 [TBL] [Abstract][Full Text] [Related]
12. One-step purification of Actinoplanes missouriensis D-xylose isomerase by high-performance immobilized copper-affinity chromatography: functional analysis of surface histidine residues by site-directed mutagenesis. Mrabet NT Biochemistry; 1992 Mar; 31(10):2690-702. PubMed ID: 1547210 [TBL] [Abstract][Full Text] [Related]
13. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase. Batt CA; Jamieson AC; Vandeyar MA Proc Natl Acad Sci U S A; 1990 Jan; 87(2):618-22. PubMed ID: 2405386 [TBL] [Abstract][Full Text] [Related]
14. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Whitlow M; Howard AJ; Finzel BC; Poulos TL; Winborne E; Gilliland GL Proteins; 1991; 9(3):153-73. PubMed ID: 2006134 [TBL] [Abstract][Full Text] [Related]
15. The reaction pathway of the isomerization of D-xylose catalyzed by the enzyme D-xylose isomerase: a theoretical study. Hu H; Liu H; Shi Y Proteins; 1997 Apr; 27(4):545-55. PubMed ID: 9141134 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of the 2.8 A model of Xylose isomerase from Actinoplanes missouriensis. Rey F; Jenkins J; Janin J; Lasters I; Alard P; Claessens M; Matthyssens G; Wodak S Proteins; 1988; 4(3):165-72. PubMed ID: 3237716 [TBL] [Abstract][Full Text] [Related]
17. Engineering the substrate specificity of xylose isomerase. Karimäki J; Parkkinen T; Santa H; Pastinen O; Leisola M; Rouvinen J; Turunen O Protein Eng Des Sel; 2004 Dec; 17(12):861-9. PubMed ID: 15713782 [TBL] [Abstract][Full Text] [Related]
18. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. Collyer CA; Henrick K; Blow DM J Mol Biol; 1990 Mar; 212(1):211-35. PubMed ID: 2319597 [TBL] [Abstract][Full Text] [Related]
19. X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Lavie A; Allen KN; Petsko GA; Ringe D Biochemistry; 1994 May; 33(18):5469-80. PubMed ID: 8180169 [TBL] [Abstract][Full Text] [Related]
20. Streptomyces glucose/xylose isomerase has a single active site for glucose and xylose. Gaikwad SM; Pawar HS; Vartak HG; Deshpande VV Biochem Biophys Res Commun; 1989 Mar; 159(2):457-63. PubMed ID: 2930523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]